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INITIAL QUESTION 

2 

Let Ω be a CAD geometric domain, i.e. an 

assembly of BRep volumes, can we generate 

a hexahedral mesh that discretizes Ω? 
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INITIAL QUESTION 
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A POSSIBLE SOLUTION 

First, generating a tetrahedral mesh 

Then split each tetrahedron into four 

hexahedral elements 

BUT 

 Generates  

bad quality elements 

 Unstructured mesh 

 

Let Ω be a CAD geometric domain, i.e. an 

assembly of BRep volumes, can we generate 

a hexahedral mesh that discretizes Ω? 



EXPECTED FEATURES (IN MOST CASES) 
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[Liu et al. 12] 

Structure 
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[Liu et al. 12] 

Structure 

Low distortion of the cells 
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[Liu et al. 12] 

Structure 
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EXPECTED FEATURES (IN MOST CASES) 

9 

[Liu et al. 12] 

Structure 

Low distortion of the cells 

Geometric boundary alignment 

Size constraint 

 

 

 



SO, WHAT’S THE GOOD QUESTION?  

Can we generate block-structured meshes that are 

aligned along simulation features and « anisotropic » ? 

http://www.truegrid.com 

10 



PLAN 

Why is it so difficult to generate full hexahedral meshes? 

 

Which families of algorithms? 

Sweeping 

Geometric / Topological advancing-front approaches 

Medial axis 

Cartesian idealization –Submapping and polycubes 

Frame fields 
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MESH GENERATION – BOTTOM-UP APPROACH 

Vertices Curves Surfaces Volumes 
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MESH GENERATION – BOTTOM-UP APPROACH 

Vertices Curves Surfaces Volumes 
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MESH GENERATION – BOTTOM-UP APPROACH 

Vertices Curves Surfaces Volumes 

Yes, I forgot to tell about something…  
Generating an hex. mesh for a volume enclosed by a quad mesh is still an open issue 

 Known result: a topological solution exists if the number of quads is even  

         [S. MITCHELL 95][B. THURSTON 93] 
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PROPERTIES OF HEXAHEDRAL MESHES 

The dual of a hexahedral mesh is a simple arrangement of surfaces  

[T. TAUTGES AND S. KNOOP, 2003]  
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Reliable operations to modify hexahedral meshes 

Sheet insertion 

Sheet extraction 
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M. J. Borde, S. E. Benzley, J. F. Shepherd, Hexahedral Sheet Extraction, proceedings of the 11th IMR, 2002 

S. A. Mitchell and T. J. Tautges, Pillowing Doublets: Refining a Mesh to Ensure That Faces Share At Most One Edge, proc. of the 

4th IMR, pages 231-240, 1995 



Reliable operations to modify hexahedral meshes 

Chord collapse 
A B 

C D 

A B 

C D 

A 
B 

C D 

B 

A=C D 
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Removes a complete column of hexahedral elements 

 



Local modification can be performed for 2D quadrilateral meshes 

Face collapse 
 

 

 

RELIABLE OPERATIONS TO MODIFY 

QUADRILATERAL MESHES 

Boundary face collapse 

[Verma 12] 



OUTLINE 

Why is it so difficult to generate full hexahedral meshes? 

 

Which families of algorithms? 

Sweeping 

Geometric / Topological advancing-front approaches 

Medial axis 

Cartesian idealization –Submapping and polycubes 

Frame fields 
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HOW TO COMPARE ALGORITHMS? 

Geometric quality 

1.Structure  

2.Low distortion of the cells 

3.Geometric boundary alignment 

4.Size constraint 

 

Degree of automaticity 

Totally automatic OR requires some user interactions 

 

Genericity of the geometric domain 

Any type of objects or restricted to specific  

types of objects 

 

Respect a pre-meshed boundary 
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Structured  

Boundary alignment  

Element size handling … 

Industrial maturity … 

Genericity … 

Respect of a boundary mesh … 

 YES   NO    It depends 



SWEEPING 1-1 

Sweeping direction 

The mesh of the source 

surface is swept until 

reaching the target surface 
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[Blacker 97] [Roca and Sarrate 10] 
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[Blacker 97] [Roca and Sarrate 10] 

Sweeping direction 

The mesh of the source 

surface is swept until 

reaching the target surface 



SWEEPING 1-1 

 
Source and target surfaces can be non planar 
 
Shape and size variations are possible during the 
sweeping process 
 
Sweeping direction is not necessary linear 
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[Blacker 97] [Roca and Sarrate 10] 



SWEEPING N-1 AND N-M  

N sources  1 target 
 
 
 
 
 
 
 
 
 
 
 
N sources  M targets 
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Source 1 

Cible 

Source 2 

Source 1 

Source 2 

Target 1 

Target 2 



28 

Geometric decomposition into meshable blocks 

 (hand-made most of the time) 

 

Each block is meshed with taking care of conformity 

constraints 

SWEEPING N-M 

cubit.sandia.gov [Blacker 97] [Roca and Sarrate 10] 

Structured  

Boundary alignment  

Element size handling  

Industrial maturity  

Genericity  

Respect of a boundary mesh  



GENERATION OF A HEX. MESH FROM A QUAD MESH 

The most constrained problem is mostly solved by advancing-front algorithms 

 

Geometric approaches  

Plastering [T. BLACKER 93]  

 Hexahedral elements added one per one 
 

H-Morph [S. OWEN 00]  
 As plastering but uses a tet. Mesh to solve geometric queries 

 
  All of them fail in the termination process 

 

BUT recently, global approaches using frame fields [HUANG ET AL. 11] [LI ET AL 12]  
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Q-Morph 
Geometric advancing front – Main principle in 2D (1/3) 

Advancing-front mesh generation 

- Local decisions based on the elements’ shape 
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Q-Morph 
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Geometric advancing front – Main principle in 2D (2/3) 

Advancing-front mesh generation 

- Local decisions based on the elements’ shape 



Q-Morph 
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Geometric advancing front – Main principle in 2D (3/3) 

Advancing-front mesh generation 

- Local decisions based on the elements’ shape 



THE TOPOLOGICAL PROBLEM 

|  PAGE 33 

Topological approaches  

topology is solved first, restrictions about the surface 

mesh 

 

 

Whisker weaving [TAUTGES ET AL. 96, N. FOLWELL AND 

S. MITCHELL 98]  

 Local geometric conditions must be satisfied along the 

domain boundary 
 

Recursive Bisection [CALVO AND IDELSOHN 00] 

 The domain is recursively split 
 

Dual Cycle Elimination and Shelling [MULLER-

HANNEMANN 02] 

Particular process for parallel loops and the sheet 

selection depends on geometry  extended in [M. 

KREMER AND AL.13] 



THE TOPOLOGICAL PROBLEM, FROM THE THEORY 

POINT OF VIEW 

Let Q be a topological quadrilateral mesh of a connected surface 

in 𝑅3 such that : 

• Q has an even number of quadrilaterals and no odd cycle in 

Q bounds a surface inside the interior domain. (True if genus-

zero). 

 

Then Q can be extended to a topological hexahedra mesh of the 

interior domain [Erickson 14] 

There is a constructive proof… It only requires to find a solution of 

20 or 22 quadrilaterals buffer cubes. As stated the existence 

of such a hex mesh is guaranteed by Thurston and Mitchell’s 

proof, it is not difficult to construct explicit hex meshes for 

these subdivided cubes by hand… 
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THE TOPOLOGICAL PROBLEM, FROM THE THEORY 

POINT OF VIEW 

Up to now, no solution has been 

found by hand !  

 

Using [Carbonera and Shepherd 

06], a solution has been 

found with 76881 hexes.  

 

It can be shown that it needs at 

least 12 hexes [Weill 16] 
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CURRENT BEST ‘KNOWN’ SOLUTIONS 
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88 hexes [Yamakawa, Shimada 10] 38440 hexes [Carbonera and Sheperd 10] 



FROM A TOPOLOGICAL TO GEOMETRICAL MESH 
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Same topological surfaces ! 

Up to now, no test to tell if a topological mesh can lead to a geometric mesh 



ADVANCING-FRONT LIMITATIONS IN 3D 

Geometric advancing-front Topologic advancing-front 

[S. Owen 00]  [Ledoux and Weill 08] 
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Structured  

Boundary alignment  

Element size handling  

Industrial maturity  

Genericity  

Respect of a boundary mesh  



OVERLAY-GRID METHODS 
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Existing automatic and robust solution 

Very used for biomedical 

applications and any applicative 

field that works with free-form 

surfaces or iso-surfaces without 

any sharp edges 

 

 

Disadvantages 
 

- Grid orientation sensitive 

- Worst quality elements are 

along the boundary 

- Boundary topology can be 

lost if the grid discretization 

is not well-adapted 
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[Maréchal 09]  

OVERLAY-GRID BASED METHODS – 3D CAD 

Structured  

Boundary alignment  

Element size handling  

Industrial maturity  

Genericity  

Respect of a boundary mesh  



USING THE MEDIAL AXIS – PRINCIPLE 

41 

The medial axis is a skeletal representation of a geometric object 

 
 

 

Ω 

Let Ω be a geometric domain, the medial axis MA(Ω) of Ω is defined by 

the set of points p in Ω such that U(p) touches the boundary of Ω more 

than once, with U(p) the largest circle centered in p that is entirely within 

Ω. 
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The medial axis is a skeletal representation of a geometric object 

 
 

 Let Ω be a geometric domain, the medial axis MA(Ω) of Ω is defined by 

the set of points p in Ω such that U(p) touches the boundary of Ω more 

than once, with U(p) the largest circle centered in p that is entirely within 

Ω. 



USING THE MEDIAL AXIS – 2D EXAMPLES 

Straightforward block meshing  [Hao et al. 11] 

      (-) Sharp corners are badly captured 

 

 

 

 

With post-processing [IMR13] [Fogg et al. 14] 

      (-) Mesh singularity often remains on the medial axis (not always what users      

          expect) 
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Meshing of the medial axis, then 1-1 sweeping in restricted areas [Quadros 14] 

 

 

 

 

 

 

 

 

 

USING THE MEDIAL AXIS – 3D EXAMPLES 
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Structured  

Boundary alignment  

Element size handling  

Industrial maturity  

Genericity  

Respect of a boundary mesh  



CARTESIAN IDEALIZATION – MAIN PRINCIPLE 
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Step 1 – Convert the geometric domain Ω  into a polycube PΩ 

Step 2 – Mesh the polycube PΩ 

Step 3 – Project the mesh of PΩ onto Ω 

1 

2 

3 
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1 

2 
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Submapping approaches 

       Solve a global boundary constraint problem [Ruiz-Girones et al. 10] 

 

 

 

 

Step 1 – Angle-based idealization 

  

 

 

 

 

 

 

CARTESIAN IDEALIZATION – MAIN PRINCIPLE 
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1 3 

A 

B C 

D 

A B C D 



Submapping approaches 

       Solve a global boundary constraint problem [Ruiz-Girones et al. 10] 

 

 

 

 

Step 3 – Automatically decomposes surface into mappable regions based on 

assigned intervals + transfinite interpolation 

 

  

CARTESIAN IDEALIZATION – MAIN PRINCIPLE 
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1 3 

i 

j 
+i1 

+j1 

-j2 

-i2 



Submapping approaches 

       Solve a global boundary constraint problem [Ruiz-Girones et al. 10] 

 

 

 

 

 

  

CARTESIAN IDEALIZATION – MAIN PRINCIPLE 
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CARTESIAN IDEALIZATION – MAIN PRINCIPLE 
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Polycube-based approaches [Gregson et al. 11][Huang et al. 14] 

- Domain deformation 

 

 

 

In [Gregson et al. 11] 

Step 1 – Iterative process to generate a polycube PΩ of Ω 

Step 3 – Mesh projection from PΩ to  Ω 

 

 

1 3 

Ω 
PΩ 

Structured  

Boundary alignment S P 

Element size handling  

Industrial maturity  

Genericity  

Respect of a boundary mesh  



FRAME FIELDS 
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Principle 

Generate a frame field on the domain which  
provides geometrical data inside the volume 

Naturally boundary-aligned for quad/hex meshes 

With a global structure  smooth transition between elements 
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FRAME FIELDS 
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Principle 

Generate a frame field on the domain which  
provides geometrical data inside the volume 

Naturally boundary-aligned for quad/hex meshes 

With a global structure  smooth transition between elements 

 

 



2D Frame field Generation 

54 

[Kowalski et al. 12] [Fogg and Amstrong 13] 



Frame Field usage – 2D Examples 
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[Kowalski et al. 12] 



Frame Field usage – 3D Examples 
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[Kowalski et al. 14]  

Generation from a geometric domain 

Block structure extraction 

Vertex-based numerical schema 

 

 

[Huang et al. 11] [Li et al. 12] 

Generation from a pre-meshed boundary 

Definition of an atlas of parameterization 

Cell-based numerical schema 

 

 

Structured  

Boundary alignment  

Element size handling  

Industrial maturity  

Genericity  

Respect of a boundary mesh  



CONCLUDING REMARKS 

Sweeping         

Geometric adv.-front          

Topological adv.-front         

Overlay-gird         

Medial axis         

Cartesian idealization 

(Submapping + Polycube) 
        

Frame fields                 
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Summary of the different approaches 

 YES   NO    It depends 



TET VERSUS HEX 
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Oblivion : The Tet 

2001 : The Monolith 
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