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CZ2A  INITIAL QUESTION

Let Q be a CAD geometric domain, i.e. an
assembly of BRep volumes, can we generate
a hexahedral mesh that discretizes Q7

A POSSIBLE SOLUTION

First, generating a tetrahedral mesh
Then split each tetrahedron into four
hexahedral elements

BUT
Generates
bad quality elements

Unstructured mesh
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CZA  EXPECTED FEATURES (IN MOST CASES)

B Structure

B Low distortion of the cells

B Geometric boundary alignment
B Size constraint

[Liuetal 12] Y
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SO, WHAT’S THE GOOD QUESTION?

Can we generate block-structured meshes that are
aligned along simulation features and « anisotropic » ?

http://www.truegrid.com




Why is it so difficult to generate full hexahedral meshes?

Which families of algorithms?
Sweeping
Geometric / Topological advancing-front approaches
Medial axis
Cartesian idealization —Submapping and polycubes

Frame fields
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CZA  MESH GENERATION — BOTTOM-UP APPROACH

—

Vertices }—} Curves |—} Surfaces

Yes, | forgot to tell about something...

B Generating an hex. mesh for a volume enclosed by a quad mesh is still an open issue

B Known result: a topological solution exists if the number of quads is even
[S. MITCHELL 95][B. THURSTON 93]




CZA PROPERTIES OF HEXAHEDRAL MESHES

The dual of a hexahedral mesh is a simple arrangement of surfaces
[T. TAUTGES AND S. KNOOP, 2003]




S. A. Mitchell and T. J. Tautges, Pillowing Doublets: Refining a Mesh to Ensure That Faces Share At Most One Edge, proc. of the
4th IMR, pages 231-240, 1995

Sheet extraction

M. J. Borde, S. E. Benzley, J. F. Shepherd, Hexahedral Sheet Extraction, proceedings of the 11th IMR, 2002



Cea Reliable operations to modify hexahedral meshes

©
¢

B Removes a complete column of hexahedral elements

Chord collapse
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lateral meshes

B Boundary face collapse
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B Face collapse




CPA OuTLINE

Which families of algorithms?
Sweeping
Geometric / Topological advancing-front approaches
Medial axis
Cartesian idealization —Submapping and polycubes

Frame fields



Geometric quality
1.Structure
2.Low distortion of the cells >
3.Geometric boundary alignment )

. . 5L l‘ 7

4.Size constraint .

N
X
S
|

Degree of automaticity
Totally automatic OR requires some user interactions

R S =

Genericity of the geometric domain SUEEe N

Boundary alignment

Any type of objects or restricted to specific

types of objects Element size handling

Industrial maturity

Respect a pre-meshed boundary Genericity

Respect of a boundary mesh

B YES B NO It depends



C2A  SWEEPING 1-1

The mesh of the source
surface is swept until
reaching the target surface
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[Blacker 97] [Roca and Sarrate 10]
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SWEEPING 1-1

Source and target surfaces can be non planar

B Shape and size variations are possible during the
sweeping process

B Sweeping direction is not necessary linear
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SWEEPING N-1 AND N-M

)
\




SWEEPING N-M

B Geometric decomposition into meshable blocks ShUellEe

(hand-made most of the time) Boundary alignment

Element size handling

B Each block is meshed with taking care of conformity
constraints

Industrial maturity

Genericity

Respect of a boundary mesh

[Blacker 97] [Roca and Sarrate 10] cubit.sandia.gov




GENERATION OF A HEX. MESH FROM A QUAD MESH

The most constrained problem is mostly solved by advancing-front algorithms

Geometric approaches

B  Plastering [T. BLACKER 93]
N Hexahedral elements added one per one

P WAD

< A PSLA S f ®m  H-Morph [S. OwEN 00]
’ WA As plastering but uses a tet. Mesh to solve geometric queries

-> All of them fail in the termination process

BUT recently, global approaches using frame fields [HuAaNG ET AL. 11] [LI ET AL 12]
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Advancing-front mesh generation

- Local decisions based on the elements’ shape
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Advancing-front mesh generation

- Local decisions based on the elements’ shape




CZA  THE TOPOLOGICAL PROBLEM

Topological approaches

topology is solved first, restrictions about the surface
mesh

Whisker weaving [TAuTGES ET AL. 96, N. FOLWELL AND
S. MITCHELL 98]

Local geometric conditions must be satisfied along the
domain boundary

Recursive Bisection [CALvo AND IDELSOHN 00]
The domain is recursively split

Dual Cycle Elimination and Shelling [MuLLer-
HANNEMANN 02]
Particular process for parallel loops and the sheet
selection depends on geometry - extended in [M.
KREMER AND AL.13]




S THE TOPOLOGICAL PROBLEM, FROM THE THEORY

POINT OF VIEW

Let Q be a topological quadrilateral mesh of a connected surface
in R3 such that :

« Q has an even number of quadrilaterals and no odd cycle in
Q bounds a surface inside the interior domain. (True if genus-
Zero).

Then Q can be extended to a topological hexahedra mesh of the
Interior domain [Erickson 14]

There is a constructive proof... It only requires to find a solution of
20 or 22 quadrilaterals buffer cubes. As stated the existence
of such a hex mesh is guaranteed by Thurston and Mitchell’s
proof, it is not difficult to construct explicit hex meshes for
these subdivided cubes by hand...



S THE TOPOLOGICAL PROBLEM, FROM THE THEORY

POINT OF VIEW

Up to now, no solution has been
found by hand !

Using [Carbonera and Shepherd /- ‘T“ e |
06], a solution has been ‘: /,” I.
found with 76881 hexes. I‘ |

It can be shown that it needs at / | :f:&
least 12 hexes [Weill 16] S |

| PAGE 35



CZA  CURRENT BEST ‘KNOWN’ SOLUTIONS

g

88 hexes [Yamakawa, Shimada 10] 38440 hexes [Carbonera and Sheperd 10]

| PAGE 36



FROM A TOPOLOGICAL TO GEOMETRICAL MESH

Same topological surfaces !

Up to now, no test to tell if a topological mesh can lead to a geometric mesh

| PAGE 37
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[Ledoux and Weill 08]

Respect of a boundary mesh

Structured

j Element size handling
Industrial maturity

Genericity

j Boundary alignment
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Geometric advancing-front

DE LA RECHERCHE A UINDUSTRIE
e ——

[S. Owen 00]



C2A OVERLAY-GRID METHODS

Existing automatic and robust solution

Very used for biomedical

applications and any applicative

field that works with free-form

surfaces or iso-surfaces without

any sharp edges

Disadvantages

Grid orientation sensitive

Worst quality elements are

along the boundary

Boundary topology can be

lost if the grid discretization
Is not well-adapted



OVERLAY-GRID BASED METHODS - 3D CAD

|

[Maréchal 09]

Structured

Boundary alignment

Element size handling

Industrial maturity

Genericity

Respect of a boundary mesh




USING THE MEDIAL AXIS — PRINCIPLE

The medial axis is a skeletal representation of a geometric object

Let Q be a geometric domain, the medial axis MA(Q) of Q is defined by
the set of points p in Q such that U(p) touches the boundary of Q more
than once, with U(p) the largest circle centered in p that is entirely within




USING THE MEDIAL AXIS — PRINCIPLE

The medial axis is a skeletal representation of a geometric object

Let Q be a geometric domain, the medial axis MA(Q) of Q is defined by
the set of points p in Q such that U(p) touches the boundary of Q more
than once, with U(p) the largest circle centered in p that is entirely within

Q.




B Straightforward block meshing [Hao et al. 11]

(-) Sharp corners are badly captured

B With post-processing [IMR13] [Fogg et al. 14]

(

(-) Mesh singularity often remains on the medial axis (not always what users
expect)
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CPA  USING THE MEDIAL AXIS — 3D EXAMPLES

Meshing of the medial axis, then 1-1 sweeping in restricted areas [Quadros 14]

Structured *

Boundary alignment m |
Element size handling |
Industrial maturity

Genericity ]

Respect of a boundary mesh | B




CPA CARTESIAN IDEALIZATION — MAIN PRINCIPLE

B Step 1 - Convert the geometric domain Q into a polycube Pq

B Step 2 — Mesh the polycube Pq
B Step 3 — Project the mesh of P, onto Q
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B Step 1 - Convert the geometric domain Q into a polycube Pq

B Step 2 — Mesh the polycube Pq
B Step 3 — Project the mesh of P, onto Q
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CPA CARTESIAN IDEALIZATION — MAIN PRINCIPLE

B Submapping approaches

Solve a global boundary constraint problem [Ruiz-Girones et al. 10]

g =

stde the angle is 0,
Step 1 — Angle-based idealization < end the angle is /2,

reversal the angle is —m,

corner  the angle is —7/2.

Ao oD
B® c



CPA CARTESIAN IDEALIZATION — MAIN PRINCIPLE

B Submapping approaches

Solve a global boundary constraint problem [Ruiz-Girones et al. 10]

g =

Step 3 — Automatically decomposes surface into mappable regions based on
assigned intervals + transfinite interpolation

[ . .
min E wene + M, -i,
‘ 0 ° o o A

constrained to:

: i
Sn=Sn, !
M> = for every edge e v o P ® ®

I | : >
| e 2> N, for every edge e i gl
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CARTESIAN IDEALIZATION — MAIN PRINCIPLE

B Submapping approaches

Solve a global boundary constraint problem [Ruiz-Girones et al. 10]
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CARTESIAN IDEALIZATION — MAIN PRINCIPLE

B Polycube-based approaches [Gregson et al. 11][Huang et al. 14]

- Domain deformation

R g

In [Gregson et al. 11]

Step 1 - Iterative process to generate a polycube Pg of Q

Step 3 — Mesh projection from Poto Q

Structured ] A\ g

Boundary alignment mS P |

Element size handling

Industrial maturity

Genericity

Respect of a boundary mesh




FRAME FIELDS

Principle

B Generate a frame field on the domain which
provides geometrical data inside the volume

B Naturally boundary-aligned for quad/hex meshes

B With a global structure = smooth transition between elements

V'
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FRAME FIELDS

Principle

B Generate a frame field on the domain which
provides geometrical data inside the volume

B Naturally boundary-aligned for quad/hex meshes

B With a global structure = smooth transition between elements




2D Frame field Generation
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Frame Field usage — 2D Examples
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Cea Frame Field usage — 3D Examples

—

[Kowalski et al. 14] [Huang et al. 11] [Li et al. 12]

B Generation from a geometric domain B Generation from a pre-meshed boundary
B Block structure extraction B Definition of an atlas of parameterization
B Vertex-based numerical schema B Cell-based numerical schema

| Structured

Boundary alignment

Element size handling

Industrial maturity
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Respect of a boundary mesh
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CONCLUDING REMARKS
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TET VERSUS HEX

Oblivion : The Tet

2001 : The Monolith
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