

TOWARDS AN AUTOMATIC AND RELIABLE HEXAHEDRAL MESHING

Presentation using some illustrations from *S. Owen*, Sandia National Laboratories, Albuquerque, USA

Tetrahedron V, Liège, July 2016

JEAN-CHRISTOPHE WEILL / FRANCK LEDOUX CEA, DAM, DIF, F-91297 ARPAJON, FRANCE

www.cea.fr

INITIAL QUESTION

Let Ω be a CAD geometric domain, i.e. an assembly of BRep volumes, can we generate a hexahedral mesh that discretizes Ω ?

INITIAL QUESTION

Let Ω be a CAD geometric domain, i.e. an assembly of BRep volumes, can we generate a hexahedral mesh that discretizes Ω ?

A POSSIBLE SOLUTION

First, generating a tetrahedral mesh

Cea

INITIAL QUESTION

Let Ω be a CAD geometric domain, i.e. an assembly of BRep volumes, can we generate a hexahedral mesh that discretizes Ω ?

A POSSIBLE SOLUTION

First, generating a tetrahedral mesh Then split each tetrahedron into four hexahedral elements

INITIAL QUESTION

Let Ω be a CAD geometric domain, i.e. an assembly of BRep volumes, can we generate a hexahedral mesh that discretizes Ω ?

A POSSIBLE SOLUTION

- First, generating a tetrahedral mesh
- Then split each tetrahedron into four
- hexahedral elements
- BUT
- Generates
- bad quality elements
- Unstructured mesh

Structure

Structure

- Structure
- Low distortion of the cells
- Geometric boundary alignment

- Structure
- Low distortion of the cells
- Geometric boundary alignment

SO, WHAT'S THE GOOD QUESTION?

Why is it so difficult to generate full hexahedral meshes?

Which families of algorithms?

Sweeping

Geometric / Topological advancing-front approaches

Medial axis

Cartesian idealization –Submapping and polycubes

Frame fields

MESH GENERATION – BOTTOM-UP APPROACH

MESH GENERATION – BOTTOM-UP APPROACH

MESH GENERATION – BOTTOM-UP APPROACH

PROPERTIES OF HEXAHEDRAL MESHES

The dual of a hexahedral mesh is a simple arrangement of surfaces [T. TAUTGES AND S. KNOOP, 2003]

Reliable operations to modify hexahedral meshes

Sheet insertion

S. A. Mitchell and T. J. Tautges, *Pillowing Doublets: Refining a Mesh to Ensure That Faces Share At Most One Edge,* proc. of the 4th IMR, pages 231-240, 1995

Sheet extraction

M. J. Borde, S. E. Benzley, J. F. Shepherd, Hexahedral Sheet Extraction, proceedings of the 11th IMR, 2002

Reliable operations to modify hexahedral meshes Chord collapse А B D Α В D В А D В A=C D Removes a complete column of hexahedral elements

DE LA RECHERCHE À L'INDUSTRIE

RELIABLE OPERATIONS TO MODIFY QUADRILATERAL MESHES

Local modification can be performed for 2D quadrilateral meshes

Face collapse

Boundary face collapse

Why is it so difficult to generate full hexahedral meshes?

Which families of algorithms?

Sweeping

OUTLINE

- Geometric / Topological advancing-front approaches
- Medial axis
- Cartesian idealization Submapping and polycubes
- Frame fields

HOW TO COMPARE ALGORITHMS?

Geometric quality

- 1.Structure
- 2.Low distortion of the cells
- 3.Geometric boundary alignment
- 4.Size constraint

Degree of automaticity

Totally automatic OR requires some user interactions

Genericity of the geometric domain

Any type of objects or restricted to specific types of objects

Respect a pre-meshed boundary

Structured	
Boundary alignment	
Element size handling	
Industrial maturity	
Genericity	
Respect of a boundary mesh	
■ YES ■ NO ■ It depends	

23

Sweeping 1-1

Sweeping direction

24

Sweeping 1-1

Sweeping direction

SWEEPING 1-1

- Source and target surfaces can be non planar
- Shape and size variations are possible during the sweeping process
 - Sweeping direction is not necessary linear

SWEEPING N-1 AND N-M

SWEEPING N-M

Geometric decomposition into meshable blocks (hand-made most of the time)

Each block is meshed with taking care of conformity constraints

cubit.sandia.gov

28

GENERATION OF A HEX. MESH FROM A QUAD MESH

The most constrained problem is mostly solved by advancing-front algorithms

Geometric approaches

Plastering [T. BLACKER 93] Hexahedral elements added one per one

H-Morph [S. OWEN 00] As plastering but uses a tet. Mesh to solve geometric queries

 \rightarrow All of them fail in the termination process

BUT recently, global approaches using frame fields [HUANG ET AL. 11] [LI ET AL 12]

Geometric advancing front – Main principle in 2D (1/3)

Advancing-front mesh generation

- Local decisions based on the elements' shape

Geometric advancing front – Main principle in 2D (2/3)

Advancing-front mesh generation

- Local decisions based on the elements' shape

Geometric advancing front – Main principle in 2D (3/3)

Advancing-front mesh generation

- Local decisions based on the elements' shape

THE TOPOLOGICAL PROBLEM

Topological approaches topology is solved first, restrictions about the surface mesh

Whisker weaving [TAUTGES ET AL. 96, N. FOLWELL AND

S. MITCHELL 98]

Local geometric conditions must be satisfied along the domain boundary

Recursive Bisection [CALVO AND IDELSOHN 00] The domain is recursively split

Dual Cycle Elimination and Shelling [Muller-HANNEMANN 02]

Particular process for parallel loops and the sheet selection depends on geometry \rightarrow extended in [M. KREMER AND AL.13]

Cea

THE TOPOLOGICAL PROBLEM, FROM THE THEORY POINT OF VIEW

Let Q be a topological quadrilateral mesh of a connected surface in R^3 such that :

- Q has an even number of quadrilaterals and no odd cycle in Q bounds a surface inside the interior domain. (True if genus-zero).
- Then Q can be extended to a topological hexahedra mesh of the interior domain [Erickson 14]
- There is a constructive proof... It only requires to find a solution of 20 or 22 quadrilaterals *buffer cubes*. As stated the existence of such a hex mesh is guaranteed by Thurston and Mitchell's proof, *it is not difficult to construct explicit hex meshes for these subdivided cubes by hand*...

THE TOPOLOGICAL PROBLEM, FROM THE THEORY POINT OF VIEW

Up to now, no solution has been found by hand !

Using [Carbonera and Shepherd 06], a solution has been found with **76881** hexes.

It can be shown that it needs at least 12 hexes [Weill 16]

88 hexes [Yamakawa, Shimada 10] 38440 hexes [Carbonera and Sheperd 10]

FROM A TOPOLOGICAL TO GEOMETRICAL MESH

Same topological surfaces !

Up to now, no test to tell if a topological mesh can lead to a geometric mesh

ADVANCING-FRONT LIMITATIONS IN 3D

[S. Owen 00]

[Ledoux and Weill 08]

OVERLAY-GRID METHODS

Existing automatic and robust solution

Very used for biomedical applications and any applicative field that works with free-form surfaces or iso-surfaces without any sharp edges

Disadvantages

- Grid orientation sensitive
- Worst quality elements are along the boundary
- Boundary topology can be lost if the grid discretization is not well-adapted

OVERLAY-GRID BASED METHODS – 3D CAD

The medial axis is a skeletal representation of a geometric object

Let Ω be a geometric domain, the medial axis MA(Ω) of Ω is defined by the set of points **p** in Ω such that **U(p)** touches the boundary of Ω more than once, with **U(p)** the largest circle centered in **p** that is entirely within Ω .

USING THE MEDIAL AXIS – PRINCIPLE

The medial axis is a skeletal representation of a geometric object

Let Ω be a geometric domain, the medial axis MA(Ω) of Ω is defined by the set of points **p** in Ω such that **U(p)** touches the boundary of Ω more than once, with **U(p)** the largest circle centered in **p** that is entirely within Ω .

USING THE MEDIAL AXIS – 2D EXAMPLES

- Straightforward block meshing [Hao et al. 11]
- (-) Sharp corners are badly captured

- With post-processing [IMR13] [Fogg et al. 14]
 - (-) Mesh singularity often remains on the medial axis (not always what users expect)

USING THE MEDIAL AXIS – 3D EXAMPLES

Meshing of the medial axis, then 1-1 sweeping in restricted areas [Quadros 14]

- Step 1 **Convert** the geometric domain Ω into a polycube P_{Ω}
- Step 2 **Mesh** the polycube P_{Ω}
 - Step 3 **Project** the mesh of P_{Ω} onto Ω

- Step 1 **Convert** the geometric domain Ω into a polycube P_{Ω}
- Step 2 **Mesh** the polycube P_{Ω}
 - Step 3 **Project** the mesh of P_{Ω} onto Ω

Submapping approaches

Solve a global boundary constraint problem [Ruiz-Girones et al. 10]

3

Submapping approaches

1

Solve a global boundary constraint problem [Ruiz-Girones et al. 10]

Step 3 – Automatically decomposes surface into mappable regions based on assigned intervals + transfinite interpolation

Submapping approaches

Solve a global boundary constraint problem [Ruiz-Girones et al. 10]

3

Polycube-based approaches [Gregson et al. 11][Huang et al. 14]

- Domain deformation

In [Gregson et al. 11]

Step 1 – Iterative process to generate a polycube P_{Ω} of Ω

Step 3 – Mesh projection from P_{Ω} to Ω

FRAME FIELDS

Principle

- Generate a frame field on the domain which provides geometrical data inside the volume
- Naturally boundary-aligned for quad/hex meshes

With a global structure \rightarrow smooth transition between elements

FRAME FIELDS

Principle

- Generate a frame field on the domain which provides geometrical data inside the volume
- Naturally boundary-aligned for quad/hex meshes

With a global structure \rightarrow smooth transition between elements

FRAME FIELDS

Principle

- Generate a frame field on the domain which provides geometrical data inside the volume
- Naturally boundary-aligned for quad/hex meshes

With a global structure \rightarrow smooth transition between elements

2D Frame field Generation

[Kowalski et al. 12] [Fogg and Amstrong 13]

Frame Field usage – 2D Examples

Frame Field usage – 3D Examples

[Kowalski et al. 14]

- Generation from a geometric domain
- Block structure extraction
- Vertex-based numerical schema

[Huang et al. 11] [Li et al. 12]

- Generation from a pre-meshed boundary
- Definition of an atlas of parameterization
- Cell-based numerical schema

CONCLUDING REMARKS

TET VERSUS HEX

Oblivion : The Tet

2001 : The Monolith

Commissariat à l'énergie atomique et aux énergies alternatives Centre DAM-Île de France - Bruyères-le-Châtel - 91297 Arpajon Cedex | T. +33 (0)1 69 26 40 00| Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

[Ali and Tucker 13] Zaib Ali and Paul G. Tucker, Multiblock Structured Mesh Generation for Turbomachinery Flows, , proc. of the 22th IMR, 2013.

[Blacker and Meyers 93] T. Blacker and R. Meyers, Seams and wedges in plastering: a 3D hexahedral mesh generation algorithm, EWC, vol. 2(9), pp. 83-93, 1993.

[Blacker 97] T. Blacker, The Cooper Tool, proc. of the 5th IMR, , pp. 217-228, 1997.

[Calvo and Idelsohn 00] N. Calvo and S. Idelsohn, All-hexahedral element meshing: Generation of the dual mesh by recurrent subdivision, CMAME, pp. 371-378, 2000.

[Erickson 2014] J. Erickson, Efficiently Hex-Meshing Things with Topology, Discrete & Computational Geometry, 2014.

[Fogg and all 14] Harold J. Fogg, Cecil G. Armstrong, Trevor T.Robinson, New techniques for enhanced medial axis based decompositions in 2-D, proc. of the 23th IMR, 2014.

[Folwell and Mitchell 98] N. Folwell and S. Mitchell, Reliable whisker–weaving via curve contraction, proc. of the 7th IMR, pp. 365-378, 1998.

[Gregson et al. 11] J. Gregson, A. Sheffer and E. Zhang, All-hex mesh generation via volumetric polycube deformation, Comput. Graph. Forum, 30(5), pp. 1407-1416, 2011.

[Huang et al. 11] J. Huang, Y. Tong, Y. Wang and H. Bao, Boundary-aligned smooth 3D cross-frame field, ACM Trans. Graph., 30(6), pp. 1-8, 2011.

[Huang et al. 14] J. Huang, T. Jiang, Z. Shi, Y. Tong, H. Bao and M. Desbrun, L1-based construction of polycube maps from complex shapes, ACM Trans. Graph., vol 33(3), article 25, 2014.

[Kowalski et al. 12] N. Kowalski, F. Ledoux and P. Frey, A PDE based approach to multi-domain partitioning and quadrilateral meshing, proc. of the 21th IMR, pp. 137-154, 2012.

[Kowalski et al. 14] N. Kowalski, F. Ledoux and P. Frey, Block-Structured Hexahedral Meshes for CAD Models using 3D Frame Fields, proc. of the 23th IMR, oct. 2014.

[Kremer and al.13] M. Kremer, D. Bommes, I. Lim and L. Kobbelt, Advanced automatic hexahedral mesh generation from surface quad meshes, proc. of the 22nd IMR, 2013.

[Ledoux and Weill 08] F. Ledoux and J.-Ch. Weill, An extension of the reliable whisker-weavin algorithm, proc. of the 16th IMR, pp 215-232, 2008.

[Li et al. 12] Y. Li, Y. Liu, Y. Xu, W. Wang and B. Guo, All-hex meshing using singularity-restricted field, ACM Trans. Graph., 31(6), pp. 1-11, 2012.

[Maréchal 09] L. Maréchal, Advances in octree-based all-hexahedral mesh generation: Handling sharp features, proc. of the 18th IMR, pp. 65_84, 2009.

[S. Mitchell 95] Scott A. Mitchell. A characterization of the quadrilateral meshes of a surface which admit a compatible hexahedral mesh of the enclosed volume. *Proc. 13th Ann. Symp. Theoret. Aspects Comput. Sci.*, 456–476, 1996. Lecture Notes Comput. Sci. 1046, Springer-Verlag.

[Muller-Hannemann 02] M. Muller-Hannemann, Quadrilateral surface meshes without self-intersecting dual cycles for hexahedral mesh generation, Computational Geometry, vol. 22, pp. 75_97, 2002.

[Owen and Sunil 00] S. Owen and S. Sunil, H-Morph: An indirect approach to advancing-front hex meshing. IJNME, 1(49), pp. 289-312, 2000.

[Quadros 14] R. Quadros, LayTracks3D: a new approach to meshing general solids using medial axis transform, proc. of the 23th IMR, oct. 2014.

[Tautges et al. 96] T. Tautges, T. Blacker and S. Mitchell, The Whisker-Weaving Algorithm: A Connectivity-based Method for Constructing All-hexahedral Finite Element Meshes, IJNME, pp. 3327-3349, 1996.

[Tautges and Knoop 03] T. Tautges and S. Knoop, Topology modification of hexahedral meshes using atomic dual-based operations, proc. Of the 12th IMR, pp. 415-423, 2003

[Thurston 93] William P.Thurston.Hexahedraldecomposition of polyhedra. Posting to sci.math, 25 October 1993.(http://www.ics.uci.edu/~eppstein/gina/Thurston-hexahedra.html).

[Roca and Sarrate 10] X. Roca and J. Sarrate, An automatic and least-square projection algorithm for sweep meshing, EWC, vol. 26, pp. 391-406, 2010.

[Ruiz-Girones et al. 12] E. Ruiz-Gironès, X. Roca and J. Sarrate, The receding front method applied to hexahedral mesh generation of exterior domains, EWC, 28(4), pp. 391-408, 2012.

[Ruiz-Girones et al. 10] E. Ruiz-Gironès and J. Sarrate, Generation of structured hexahedral element meshes in volumes with holes, Finite Elements in Analysis and Design, vol. 46(4), pp. 391-406.

[Verma 2012] C. S. Verma and T. Tautges, Jaal: Engineering a High Quality All-Quadrilateral Mesh Generator, proceedings of the 20th IMR, pp. 511-530, 2012.

[Weill 2016] J.-Ch. Weill, "Efficiently Hex-Meshing things with Topology, in pratice", Poster 25th IMR.