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Motivation – Constrained Tetrahedralizations

How to generate a tetrahedralization that contains a set of constraints, i.e.,
edges and (triangular or polygonal) faces?

A constrained edge AB is missing A constrained face (in green) is missing

Image from [Owen 1999]
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3D Indecomposable Polyhedra

There are 3d simple polyhedra which cannot be tetrahedralized without extra
vertices.

Delaunay triangulations exist in all dimensions.

Why haven’t CDTs been generalized beyond E²?

One reason:  not every polyhedron can be
tetrahedralized without extra vertices.

Schönhardt’s
polyhedron

The Schönhardt Polyhedron [1928]
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3D Indecomposable Polyhedra

Ruppert & Seidel [1993]: It is NP-complete to decide whether a given 3D
polyhedron can be triangulated without using additional points.

234 J. Ruppert and R. Seidel 

ainants 

Fig. 11. Clause niches attached to polyhedron P. 

implication. Lastly, we show that P can indeed be constructed to satisfy the 
constraints. 

Outline of  Construction. For  the time being imagine the general shape of the 
polyhedron P we construct as that of a rectangular box, with tiny niches arranged 
on two sides of the box. There will be clause niches that correspond to clauses, 
and variable niches corresponding to variables. We also use two special kinds of 
vertices: truth-setting vertices and literal vertices. 

The clause niches will be attached to the bot tom of the box, and will be 
constructed (using the Il luminant Lemma) such that their illuminants form skinny 
vertical regions that do not intersect within the polyhedron, as shown in Fig. 11. 
There will be one literal vertex for each occurrence of each literal, with each literal 
vertex being placed on the top of the box in the illuminant of the corresponding 
clause. Each variable's literals will be arranged in two rows, one for the positive 
literals and one for the negative literals. Figure 12 shows a Satisfiability expression 
and the resulting clause niches and literal vertex placements. 

The idea is that a clause niche may be triangulated only from its corresponding 
literal vertices, as they are the only vertices in its illuminant. The literal vertex 
that triangulated the niche corresponds to a literal that satisfies the clause in the 
expression E. We need a way to enforce a " t ruth assignment," to prevent a 

literal vertices. ~ x~ ~ x2 ~ xt 
placed here i ......... ~ ........ .~. " . . . .  

~ - " ' ' ~ ' ~ -  clause niche 
Fil~ 12. Regions of polyhedron corresponding to variables, niche for clause (X-'~I + g2 + X~), and 
placemmat of three corresponding literal vertices. 

On the Difficulty of Triangulating Three-Dimensional Nonconvex Polyhedra 

variable niche 
illuminant -~. 

Fig. 13. Truth-setting vertices are viewpoints of variable niches. 

235 

variable's positive and negative literal vertices from simultaneously being used to 
triangulate clause niches. Because of the way we have placed the literal vertices 
in rows, we can use a gadget like that of Fig. 10 in which one of two specified 
tetrahedra must be present in any triangulation, each of which "blocks" one row 
of literal vertices from seeing their corresponding clause niches. For each variable 
in the expression, we add to the polyhedron a variable niche along the ballk face, 
and two truth-setting vertices on the front face, as shown in Fig. 13. We use the 
Illuminant Lemma to ensure that only the two truth-setting vertices can be used 
to triangulate the variable niche. The use of the TRUE truth-setting vertex will 
represent the variable being set true, the FALSE vertex will represent false. 

Given a triangulation of the polyhedron P, we can show that the expression E 
is satisfiable. We can interpret a truth assignment from the triangulation of the 
variable niches, since the base triangle of each variable niche forms a tetrahedron 
with either the TRUE truth-setting vertex or the FALSE truth-setting vertex. If 
the TRUE truth-setting vertex was used, the variable is set true, and the negative 
literals will be blocked from seeing their clause niches. If the FALSE truth-setting 
vertex was used, the variable is set false, and the positive literals will be blocked 
from seeing their clause niches. We know that this truth assignment is a satisfying 
truth assignment because of the following: The base triangle of each clause niche 
must have formed a tetrahedron with one of the literal vertices. This vertex must 
correspond to a literal set true, since vertices corresponding to false literals are 
blocked from triangulating their clause niches. The literal vertex that triangulates 
the niche represents a literal that satisfies the corresponding clause. Thus we have 
shown that the implication 

polyhedron P can be triangulated =~ expression E is satisfiable 

holds for this simple polyhedron construction. 

The Refined Construction. We run into difficulties if we use the above construc- 
tion and try to show that a satisfying truth assignment for E yields a triangulation 
of the polyhedron P. We would like to use the satisfying assignment to guide us 
in triangulating the clause niches and variable niches, but this yields a partial 
triangulation in which many tetrahedra stretch across the interior of the poly- 

Ruppert & Seidel’s Polyhedron [1993]
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How many Steiner points are necessary?

A1

A2 B2

C2

B1

C1

A2

A1

B1

B2

C1

C2

Figure: The (open) valid domain for placing Steiner points inside the Schönhardt polyhedron. A side view
(left) and a top view (right) are shown.
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The lower bound is Ω(n2)

492 BERNARD CHAZELLE

(a)

o/( o a. .i. b

FZG. 4. The polyhedron P.

between these two faces. Also the parallelepiped has a depth and width of N+ 2. Fig.
4c gives all the coordinates of the top and bottom notches.

3.3. Decomposing P into convex parts. We define E as the portion of P comprised
between the two hyperbolic paraboloids z xy and z xy/ e and the four planes
x 0, x N, y 0, y N. E is a cylinder parallel to the z-axis, of height e, whose base
is the region of the hyperbolic paraboloid z xy with 0<_-x, y_-<N (Fig. 5). Let
Q1," ", Q, be any convex decomposition of P and let Q* denote the intersection of
Qi and :. Since : lies inside P, the set of Q* forms a partition of :. Note that Q*
may consist of 0, 1, or several blocks, most of which are likely not to be polyhedra.
Our goal is to prove that m >-cN2 for some constant c, by showing that the volume
of Q* cannot be too large. By volume of Q*, we mean the sum of all the volumes of
the blocks composing Q*. We first characterize the shape and the orientation of the
large Q/*’s, which permits us to derive an upper bound on their maximum volume.

FIG. 5. The warped region

The Chazelle’s polyhedron [1984]
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Convex Decomposition Algorithms

� Chazelle & Palios [1990]: A non-convex polyhedron of zero genus with n vertices and r

reflex edges can be decomposed into O(n+ r2) tetrahedra. .

� Bajaj and Dey [1992]: A non-convex polyhedron of zero genus with n vertices and r

reflex edges can be decomposed into O(nr2 + r7/2) tetrahedra in O(nr + r5/2)

space.

The Fence-Off algorithm A test result of the algorithm

from [Chazelle & Palios 1990] implemented in [Palios 1992]
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Convex Decomposition Algorithms

� Erickson [2005]: Every local polyhedra can be decomposed into O(n logn) tetrahedra.

� De Berg & Gray [2010]: Every locally-fat polyhedron with convex fat faces can be

decomposed into O(n) tetrahedra.

� Both local polyhedra and locally-fat polyhedra also include polyhedra which are

tetrahedralizable without Steiner points.M. de Berg, C. Gray / Computational Geometry 43 (2010) 73–83 79

Fig. 6. (a) An (α,β)-covered polyhedron with fat faces whose interior cannot be covered by a bounded number of fat tetrahedra. (b) The part of the
polyhedron seen by a point in the center. Note that the polyhedron is constructed so that a good tetrahedron just fits at the points on the boundary inside
the central “tube”.

an angle of at least 45◦ with the bottom facet. This implies that, for any reasonable value of α (for instance, α = 1/100 will
do), we can place a good tetrahedron at p.

Finally, it is easy to see that for points p on a cube facet, and for points on a needle that are not close to a needle of
opposite orientation, we can also put a good tetrahedron. We can conclude with the following theorem.

Theorem 2. There are constants α > 0 and β > 0, such that there are (α,β)-covered polyhedra for which any convex decomposition
consists of Ω(n2) convex pieces, where n is the number of vertices of the polyhedron.

2.2. Decompositions and coverings with fat tetrahedra

When we attempt to partition non-convex polyhedra into fat tetrahedra, or other fat convex objects, the news is uni-
formly bad. That is, no matter which of the realistic input models we use (of those we are studying), the number of fat
convex objects necessary to cover the polyhedron can be made arbitrarily high. For polyhedra without fatness restrictions,
there are many examples which require an arbitrary number of fat convex objects for partitioning. In fact, for any constant
β > 0 we can even construct a polyhedron that cannot be covered at all by β-fat convex objects—simply take a polyhedron
that has a vertex whose solid angle is much smaller than β . It is also not hard to construct, for any given β > 0, a local
polyhedron that cannot be covered with β-fat convex objects. For instance, we can take a pyramid whose base is a unit
square and whose top vertex is at distance ε ≪ β above the center of the base.

Next we show how to construct, for any given integer k > 0, an (α,β)-covered polyhedron of constant complexity and
with convex fat faces, which requires Ω(k) fat convex objects to cover it. First we observe that a rectangular box of size
1 × (β/k) × (β/k) requires Ω(k) β-fat convex objects to cover it. Now consider the (α,β)-covered polyhedron in Fig. 6. The
essential feature of the construction in Fig. 6 is that from any point p along the long axis of the tube, one cannot see much
outside the tube. Thus any convex object inside P that contains p must stay mainly within the tube, and the tube basically
acts as a rectangular box of size 1 × (β/k) × (β/k). Hence, Ω(k) β-fat tetrahedra are required in any convex covering of the
polyhedron. We obtain the following result.

Theorem 3. There are (α,β)-covered (and, hence, locally-fat) polyhedra with n vertices and convex fat faces, such that the number of
objects used in any covering by fat convex objects cannot be bounded as a function of n. Furthermore, for any given β > 0 there are
local polyhedra for which no convex covering with β-fat tetrahedra exists.

3. Covering the boundary

In the previous section we have seen that the number of fat convex objects needed to cover the interior of a fat non-
convex polyhedron P cannot be bounded as a function of n. In this section we show that we can do better if we only wish
to cover the boundary of P . Unfortunately, this only holds when P is (α,β)-covered; when P is locally fat, we may still
need an arbitrarily large number of fat convex objects to cover its boundary.

Recall that for each point p on the boundary of an (α,β)-covered polyhedron P , there is a good tetrahedron T p ⊂ P
with one vertex at p, that is, a tetrahedron that is α-fat and has minimum edge length β · diam(P ). We first observe that
we can actually replace T p by a canonical tetrahedron, as made precise in the following lemma.

Lemma 3. Let P be an (α,β)-covered polyhedron. There exists a set C of O (1/α) canonical tetrahedra that are Ω(α)-fat and have
diameter Ω(β · diam(P )) with the following property: for any point p ∈ ∂ P , there is a translated copy T ′

p of a canonical tetrahedron
that is contained in P and has p as a vertex.

Proof. For simplicity, we scale P such that β · diam(P ) = 1. Consider a unit cube C . Cover each face of C by a triangulated
regular grid consisting of O (1/α) triangles that each have area c · α for a suitable constant c and that are each O (α)-fat

A locally-fat polyhedron with fat faces whose interior cannot be covered by a

bounded number of fat tetrahedra. [De Berg & Gray 2010]
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Conforming Delaunay Tetrahedralizations

� Algorithms: [Murphy, Mount, & Gable 2000], [Cohen-Steiner, Colin de Verdière, &

Yvinec 2002]

� A conforming Delaunay tetrahedralization may include a lot of Steiner points. An O(n3)

upper bound of Steiner points for 2d conforming Delaunay triangulation is proven

[Edelsbrunner & Tan 1993]. (A recent improvement of this result by Bishop is O(n2.5)).

The 3d case is still open.

Figure from [Edelsbrunner & Tan 1993]
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Constrained Delaunay Tetrahedralization

� Algorithms: [Shewchuk 2002, 2003], [Si & Gärtner 2005], [Si & Shewchuk 2012].

� The number of Steiner points is (significantly) reduced. However, an upper bound is still

unknown.

A Delaunay tetrahedralization A Constrained DT.
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Interior Steiner Points

� In many applications, the input boundary are required to be preserved.

� Steiner points (if they are necessary) can only be placed in the interior of the domain.

� Neither conforming nor constrained Delaunay terahedralization can satisfy this

requirement.
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Boundary Recovery Methods

� George, Hecht, & Saltel [1991]: Use edge/face swaps together with interior Steiner

points insertion.

� Weatherill & Hassan [1994] Insert Steiner points at where the boundaries and T
intersect, delete vertices or relocate them from the boundaries afterwards.

� George, Borouchaki, & Saltel [2003]: Combine the above two methods.

276 P. L. George et al., Automatic mesh generator 

Step 0  steps 1,2,3 step 4 

Steps 5,6 steps 7,8 Final step 9 

Fig. 11. Step 0, steps 1, 2, 3, step 4, steps 5. 6, steps 7, 8. and step 9. 

PROOF. Proposition 3.1 can be applied to each missing edge. Due to assumption (iii) it is 
obvious that a previously created edge or an existing edge belonging to the given boundary 
cannot be deleted. So Theorem 3.1 holds. Cl 

REMARK 3.1. The proposed solution does not require the creation of extra points. 

REMARK 3.2. The solution is valid for domains of general shape (convex or not) because of 
step 2 of the general scheme mentioned in Section 1. 

4. Solution for 3D geometry 

In this case, we have an initial mesh (for instance due to the Voronoi’s method) which 
contains all the points of the data (the given boundary) and the 8 extra points of the including 
box. This initial mesh does not exactly fits the boundary in general (refer to Theorem 3.1): 
some given edges and moreover some given faces are not included in the corresponding list of 
this mesh. 

So the problem is to derive a mesh from the initial one which exactly contains the data. As 
the existence of all given edges does not guarantee the existence of all faces, but because it is a 
necessary condition< it is convenient to consider two steps: 
(i) problems due to missing given edges; 

(ii) problems due to missing given faces. 
The following subsection considers the case of the missing edges and the next 

devoted to that of missing faces. 

4.1. The case of missing edges 

First, we consider the case of only one missing edge which can be seen as follows. 

one is 

2018 N. P. WEATHERILL AND 0. HASSAN 

6.2. Boundary edge recovery 

The procedure to recover a missing edge of a boundary face involves two steps. Firstly, it is 
necessary to identify the faces, edges and points of tetrahedra which the edge intersects. Secondly, 
local transformations involving tetrahedra are performed to recover the edge. 

Consider a line joining two surface points A and B which is not contained in the tetrahedral 
construction. The line does not exist because faces, edges or points of tetrahedra intersect the line 
AB. The line segment from point A can intersect the tetrahedron containing A, in the direction of 
AB, through a face, edge or point. In turn, the next line segment in the adjacent tetrahedron can 
intersect through a face, edge or point and so on through to the tetrahedron which contains node 
B. Hence, it is possible for the line AB to pass through a tetrahedron with a combination of 

can be described in the following matrix. intersections, which 

Line AB leaves a 

Line AB passes into a tetrahedron through a 
Node Edge Face 

Node 1 1 0 
tetrahedron through Edge 1 1 1 

Face 0 1 0 

In the above matrix, an entry of zero implies that the intersection through a tetrahedron affects 
only that tetrahedron through which the line segment passes. An entry of unity, implies that the 

f i  Facz-Fpce Intersection w (3-3) 

Node-Edge InterxctionTLpc (1-2) 
and Edge-Node Intersection rLpc (2- 1) 

Figure 5. Types of edge-tetrahedron intersections for missing surface edges 

George, Hecht, and Saltel 1991 Weatherill and Hassan 1994
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Experiment 1 (TetGen v1.5)

Example: mohne (from INRIA Mesh Repository)

Input: 2760 points, 5560 triangles
Output: added 2 Steiner points
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Experiment 2 (TetGen v1.5)

Example: 03-machinery-part_cut (from INRIA Mesh Repository)

Input: 448 points, 1120 triangles
Output: added 8 Steiner points
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Bagemihl’s Theorem [1948]

If n is an integer not less than 6, then there
exists a polyhedron, πn, with n vertices and the
following properties:

(I) πn is simple and every one of its faces is a triangle.

(II) If τ is a tetrahedron, each of whose vertices is a

vertex of πn, then not every interior point of τ is an

interior point of πn.

(III) Every open segment whose endpoints are vertices

of πn, but which is not an edge of πn, lies wholly

exterior to πn.

(IV) Every triangle whose sides are edges of πn is a

face of πn.

412 ON INDECOMPOSABLE POLYHEDRA [September, 

to n,; by (IV), every face of T would be a face of n,; and, according to (I), T, 
is simple, so that n, would have to be identical with T. But this would contradict 
our assumption that n 2 6. 

2. Description of ns. Let All B1, Cl be the vertices of an equilateral triangle, 
each of whose sides has length 1; and let Az, Bz, CZ be the-vertices of the tri- 
angle obtainable from triangle AlBlCl by first rotating the latter about its center, 
and in its plane, through 30' in the direction AIBICI, and then translating it one 
unit in the direction perpendicular to the plane AlBlCl, as in the figure, where 

Ad, Bz, Cz correspond, respectively, to All B1, Cl under this transformation. 
Then n6 consists of 

6 vertices: All B1, Cl; Az, Bz, Cz; 
1 2  edges: AlBl, BIG, CIAI; AzBz, BzCZ, C2A2; AIAz, BIBz, CICZ; A I B ~ ,  BlC2, 

CIA2 ; 
8 triangular faces: AlBlCl, AzBzCZ; AIAzCI, BlBzAl, ClCzBl; AiAnBz, BlB2C2, 

CiCzA2. 

The Bagemihl polyhedron
(π9) with 9 vertices

� The condition (II) follows from (I), (III), and (IV).
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Irreducible and Indecomposable Polyhedra

Definition: A 3d (non-convex) polyhedron P is an irreducible and
indecomposable polyhedron if for every tetrahedron τ , whose vertices is a
vertex of P , not every interior point of τ is an interior point of P .

· July 5, 2016 · Page 19 (44)



Irreducible and Indecomposable Polyhedra

Definition: A 3d (non-convex) polyhedron P is an irreducible and
indecomposable polyhedron if for every tetrahedron τ , whose vertices is a
vertex of P , not every interior point of τ is an interior point of P .

Remarks:

� If a polyhedron is irreducible then it is indecomposable, but the reverse is false.

� Bagemihl’s Theorem claims there exist a family of irreducible and indecomposable

polyhedra.
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Irreducible and Indecomposable Polyhedra

Definition: A 3d (non-convex) polyhedron P is an irreducible and
indecomposable polyhedron if for every tetrahedron τ , whose vertices is a
vertex of P , not every interior point of τ is an interior point of P .

Remarks:

� If a polyhedron is irreducible then it is indecomposable, but the reverse is false.

� Bagemihl’s Theorem claims there exist a family of irreducible and indecomposable

polyhedra.

Proposition: If a 3d simple and simplical polyhedron contains no open
segments, then it is reducible. (to be proven)
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Some Well-Known Polyhedra

Schönhardt polyhedron Rambau’s generalisation Chazelle’s polyhedron

1928 2005 1984

310 g. Soheahardt. 

Wit gehen aus yon einem goraden Prisma mit gloiohseigig dreieokiger 

Ortmdil&che. In den drei quadra~ischon Seltenfl~chen werden in der Weiss 

drei Diagonalen d~ d~ d 8 gezogen, dal~ sis boi Drehung des Prismas am 

seine Itauptachse um 120 ~ bzw. 240 ~ ineinander fibergehen. 

Ntm wird das obere Dreieek gegea das untere 

um die Aehse so gedreht, dall die Diagonalen sick 

zua~chst vcrl~ingern. Die beiden Dreieeke hal; man 

sick dabei Ms sl;arr vorzastellen. ~ den Dreh- 

winkel ~* gelte: 

0 <. va <: 60 o . 

Der so entstandeno KSrpex*) besil;zl; drei Hohl- 

kanten, n~imlieh die Diagonalen der arsprii~gliehen 

i Quadrate, das heil~t, l~ngs dieser ist er konkav. 
Seine Kanl;en haben den Zusammenhang des 

Oktaeclers, in d a s e r  nebenbei bemerkt iibergefiihrl; 

Fig. 1. werden kaan, indem man obige Drehung rfiekggngig 

macht und um 60 ~ weil;erdreht. Infolgedessen kann ohne Einfiihrung 

nener Kanten unmeglieh ein Tetraeder yon ibm abgespalten werden. Die 

einzigen neck nicht gezogenen Yerbindungslinien tier seeks Eckpunk~ 

sind abet diejemgen, welehe den neck nicht verwendeten Diagonalen der 

Quadrate in der Ausgangsfigur en~spreehen. Da sic vollsl;iindig aullerhalb 

des KSrpers hegen, kann dieser nieht in obigem 8inne in Tetraeder zer- 

legl; werden. 
Fiir v ~ 6 0  ~ entsl;ehl; sin KSrper, dessen Inheres in zwei getrenzte 

Tetraede~ zerf~llt, and dessen Obertt~iche zum Teil doppelt iiberdeckl; ist~ 

Setzl; man die Kantent~inge des Prismas gleieh Eins, so liefer~ sine 

einfache Reehnung fiir die L~nge d d e r  Diagonalen d, (v ~ 1, 2, 3) dis 

Beziehung: 

d ~ = 1 + ~ s i n ( 6 0  ~ + ~).  

Wie ma~l hieraus ersieh~, nimmt diese L~inge bei wacJasendem ~ zu 

fiir v a < 30 ~ ab fiir '~' > 30 ~ und erreicht bei v~= 300 ihr Maximur~ 

Hier verschwindel; also die Ableitung tier Kantenl~mge naeh ~, oder worm 

man sick die Drehung etwa gteichfSrmig ausgefiih~ denk% die Ableitu~g 

nach der Zeit. Das betrefftende Polyeder ist somil; im Blaschkeschcn 

Sinne ,,waeklig". Herr Blasehke hat; die wacldigen Achtttaehe in folgender 

Weiso charakterisiert: Fa$t~ man die aeht Begrermungsclreiecke des Aeht~ 

flachs so in z~ei Gruppen zusammen, dab keine zwei, versehiedea~en 

q Die Fig. t zeigt ihn fiix den Fall .~.= ;~0 o in schiefer Parallelprojaktion. 

Bagemihl’s generalisation Jesson’s polyhedron Rupper & Seidel

1948 1967 1993
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to n,; by (IV), every face of T would be a face of n,; and, according to (I), T, 
is simple, so that n, would have to be identical with T. But this would contradict 
our assumption that n 2 6. 

2. Description of ns. Let All B1, Cl be the vertices of an equilateral triangle, 
each of whose sides has length 1; and let Az, Bz, CZ be the-vertices of the tri- 
angle obtainable from triangle AlBlCl by first rotating the latter about its center, 
and in its plane, through 30' in the direction AIBICI, and then translating it one 
unit in the direction perpendicular to the plane AlBlCl, as in the figure, where 

Ad, Bz, Cz correspond, respectively, to All B1, Cl under this transformation. 
Then n6 consists of 

6 vertices: All B1, Cl; Az, Bz, Cz; 
1 2  edges: AlBl, BIG, CIAI; AzBz, BzCZ, C2A2; AIAz, BIBz, CICZ; A I B ~ ,  BlC2, 

CIA2 ; 
8 triangular faces: AlBlCl, AzBzCZ; AIAzCI, BlBzAl, ClCzBl; AiAnBz, BlB2C2, 

CiCzA2. 

234 J. Ruppert and R. Seidel 

ainants 

Fig. 11. Clause niches attached to polyhedron P. 

implication. Lastly, we show that P can indeed be constructed to satisfy the 
constraints. 

Outline of  Construction. For  the time being imagine the general shape of the 
polyhedron P we construct as that of a rectangular box, with tiny niches arranged 
on two sides of the box. There will be clause niches that correspond to clauses, 
and variable niches corresponding to variables. We also use two special kinds of 
vertices: truth-setting vertices and literal vertices. 

The clause niches will be attached to the bot tom of the box, and will be 
constructed (using the Il luminant Lemma) such that their illuminants form skinny 
vertical regions that do not intersect within the polyhedron, as shown in Fig. 11. 
There will be one literal vertex for each occurrence of each literal, with each literal 
vertex being placed on the top of the box in the illuminant of the corresponding 
clause. Each variable's literals will be arranged in two rows, one for the positive 
literals and one for the negative literals. Figure 12 shows a Satisfiability expression 
and the resulting clause niches and literal vertex placements. 

The idea is that a clause niche may be triangulated only from its corresponding 
literal vertices, as they are the only vertices in its illuminant. The literal vertex 
that triangulated the niche corresponds to a literal that satisfies the clause in the 
expression E. We need a way to enforce a " t ruth assignment," to prevent a 

literal vertices. ~ x~ ~ x2 ~ xt 
placed here i ......... ~ ........ .~. " . . . .  

~ - " ' ' ~ ' ~ -  clause niche 
Fil~ 12. Regions of polyhedron corresponding to variables, niche for clause (X-'~I + g2 + X~), and 
placemmat of three corresponding literal vertices. 
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Extended Bagemihl’s Theorem

Theorem [Goerigk & Si 2015] If n is an integer not less than 6, then there
exists an irreducible and indecomposable polyhedron, σn, with n vertices and
the following properties:

(I) σn is simple and every one of its faces is a triangle.

(II) Every open segment e, whose endpoints are vertices of σn, but which is not an

edge of σn, does not lie in the interior of σn.

(III) Every triangle whose sides are edges of σn is a face of σn.
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A Motivation Example
A missing edge [c, d] is crossing a number of triangles that all share a
common line segment [a, b].
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Construction of σn
Choose four non-coplanar points a,b, c,d ∈ R3, and a (simple) curve γ
starting at c and ending at d, and γ lies in the intersection of the two open
halfspaces bounded by the triangles cda and dcb (using the right-hand rule
to orient the vertices of the triangles).
Now we will choose k + 2 (k ≥ 0) distinct points, denoted as g0, . . . ,gk+1,
on the curve γ from c to d.

a

b

c

d

g0

g1
g2

g3

g4
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Construction of σn
(c1) The line segment cd intersects all the triangles abgi, i = 0, . . . , k + 1.

(c2) Given two adjacent points gi and gi+1, for i = 0, . . . , k, on the curve γ, the point gi+1

and d must lie in the same halfspace bounded by the plane containing abgi.

(c3) Let gi and gj , for i, j = −1, . . . , k + 2 and i 6= j, be two non-adjacent points on the

curve γ where g−1 := c and gk+2 := d. Without loss of generality, assume i < j.

Then the line segment gigj (except g−1gk+2 = cd) does not intersect all triangles

abgl, where i < l < j.

(c4) Let gi, gi+1 and gi+2, for i = −1, . . . , k, be three consecutive points on the curve γ.

Then the three points are neither coplanar with a nor b.

a

b

c

d

g0

g1
g2

g3

g4
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Construction of σn

Now the polyhedron σn, n = 6 + k, where k ≥ 0, is constructed by choosing
the boundary faces listed in Table.

(1) (a, c,d), (b, c,d)

(2) (a, c,g0), (b, c,g0), (a,d,gk+1), (b,d,gk+1)

(3) (a,gi,gi+1), (b,gi,gi+1), where i = 0, . . . , k

a, b

c d

g0

g1 g2
g3

g4

a b

c, d

g0

g1 g2

g3
g4
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Properties of σn
� σn satisfies the extended Bagemihl’s Theorem, hence it is an irreducible indecomposable

polyhedron.

� σn is combinatorially the same as πn, in particular, σ6 = π6 and is the Schönhardt

polyhedron.

A1=g0

A2=g1
B2=a

B1=c

C1=b

C2=d

A1=g0

D1=g1

D2=g2

D3=g3

A2=g4
B2=a

C2=d

B1=c

C1=b

Figure: The mapping between the vertices of σn and the vertices of the Bagemihl polyhedron πn.
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The Number of Interior Steiner Points

A σn may need more than one interior Steiner point to be decomposed.

a

c

d

g0

g1

g2

g3

g4

g5

g6

g7

b

ta,0tb,0

ta,1tb,1
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The Number of Interior Steiner Points

Theorem [Goerigk & Si] σn can be tetrahedralized by adding
⌈
n−5

2

⌉
interior

Steiner points.

a

bc

d

g0

g1
g2

g3

g4

g1

g3

*

*

s1

s3

l

a, b

c d

g0

g1 g2
g3

g4

g1 g3

s1
s3 l

**

a, b

c d

s1 s3 ls5 s7 s9
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The Chazelle Polyhedron
The non-convex polyhedron constructed by Chazelle, known as the Chazelle
polyhedron, establishes a quadratic lower bound on the minimum number of
convex pieces for the 3d polyhedron partitioning problem.

z

y

x

a0

b0

bN

βN

aN

β0

αN

α0

Figure: Left: A saddle surface (a hyperbolic paraboloid). Right: The Chazelle polyhedron with three
notches, i.e., N = 2, on the top and the bottom faces, respectively.
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The Reduced Chazelle Polyhedron

(1) (2) (3)

. . .

D

. . .

. . .

. . .

α0

αN

b0

bN

βN

β0

aN
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β0
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βN

aN

b0

a0

bN

α0

β0

αN

βN

aN

b0

a0

bN

α0

bN

a0

b0

aN

βN

β0

t1

t2

C

α0

A

Fi

t3

t0

α0

bN

a0

b0

aN

βN

αN

β0

B α0

bN

a0

αN
b0

aN

βN

αN

β0

Ei
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The Reduced Chazelle Polyhedron

bN

αN

z = xy

z = xy + ε

a0

α0 α1

b0

β1

aN

β0

βN

b1

a1 . . .

β0

b0a0

a1

aN

b1

bN

α1

β1 βN

αNα0

. . . . . .

. . . . . .β0

b0a0

a1

aN

b1

bN

α1

β1 βN

αNα0

. . . . . .

. . .

Tt Tb

Figure: Left: A reduced Chazelle polyhedron Φ3,ε. Right: The top triangulation Tt includes the set of top
faces as viewed from the point (0, 0,+∞) toward the−z direction. The bottom triangulation Tb includes
the set of bottom faces viewed from the point (0, 0,−∞) toward the +z direction.
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Edges Flips and Tetrahedralizations
Sleator et al [1988] showed the correspondence between a sequence of edge
flips and a tetrahedralisation of a 3d convex polyhedron.

11

11

1

1

flip (3,6,2,4)

1

2

4

5

6

3

1

4

5

2

3

6

flip (1,5,3,6)

flip (1,3,2,6)

flip (3,5,4,6)

2’ 1’

6

6’

5’

2’

4’

3’

1’

6

2

3

5

4

6’

5’

2’

4’

3’

1’

6

2

3

5

4

6’

5’

2’

4’

3’

1’

6

2

3

5

2

3

5

4

4

6’

5’

2’

5’

6’

4’

6’
3’

1’

4

6

2

5’

2’

3

5

4’

3’

4

5

3

2

6

1’

3’

4’

Figure: Left: A tetrahedralisation of an octahedron with four tetrahedra. Right: A sequence of edge flips
which corresponds to the tetrahedralisation on the left.
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A Placement of Interior Steiner Points

β0

βN

b1

bN

s0,0

s0,1
s1,1

s1,0

β1

b0

a0

z = xy + ε

aN

a1 αNα1α0

z = xy + ω

z = xy

sN,NaN

b1

bN

α1

β1 βN

αNα0

. . . . . .

. . .

. . .

s0,0

s0,1

s1,0

s1,1

sN,0

sN,1

s0,N s1,N

β0

b0a0

a1

Figure: The interior Steiner points, {si,j | i, j = 0, . . . , N}, are placed directly at the intersections of
the two set of lines in the xy-plane and all lie on the saddle surface z = xy + ω, where 0 < ω < ε.
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A Modified Polyhedron

sN+1,−1

s1,1 sN,1

s0,N s1,N sN,N

. . .

s−1,0

s−1,1

s−1,N

sN,N+1. . .s0,N+1 s1,N+1s−1,N+1 sN+1,N+1

s−1,−1 s0,−1 s1,−1 . . . sN,−1

sN+1,0

sN+1,1

sN+1,N

. . .

s0,0 s1,0 sN,0

s0,1

sN+1,−1

s1,1 sN,1

s0,N s1,N sN,N

. . .

s−1,0

s−1,1

s−1,N

sN,N+1. . .s0,N+1 s1,N+1s−1,N+1 sN+1,N+1

s−1,−1 s0,−1 s1,−1 . . . sN,−1

sN+1,0

sN+1,1

sN+1,N

. . .

s0,0 s1,0 sN,0

s0,1

T s
t T s

b

Figure: The modified top and bottom triangulations of Φs
N,ε. There are four new vertices: s−1,−1,

sN+1,−1, s−1,N+1, and sN+1,N+1. The newly added triangles are shown in yellow.
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Tetrahedrqlization Step 1: Edge Split-
ting

sN+1,−1

s1,1 sN,1

s0,N s1,N sN,N

. . .

s−1,0

s−1,1

s−1,N

sN,N+1. . .s0,N+1 s1,N+1s−1,N+1 sN+1,N+1

s−1,−1 s0,−1 s1,−1 . . . sN,−1

sN+1,0

sN+1,1

sN+1,N

. . .

s0,0 s1,0 sN,0

s0,1

sN+1,−1

s1,1 sN,1

s0,N s1,N sN,N

. . .

s−1,0

s−1,1

s−1,N

sN,N+1. . .s0,N+1 s1,N+1s−1,N+1 sN+1,N+1

s−1,−1 s0,−1 s1,−1 . . . sN,−1

sN+1,0

sN+1,1

sN+1,N

. . .

s0,0 s1,0 sN,0

s0,1

T s
t T s

b

Figure: An example result of the first step of the transformation algorithm. All Steiner points are inserted by
splitting the edges.
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Tetrahedrqlization Step 2: Edge Flips

(flipping lower edges)(flipping upper edges)

(flipping right edges)(flipping left edges)

s0,0

s0,0 s1,0 sN,0

sN,N

s0,0

s1,N

s1,0 sN,0

sN,0

s0,1 s1,1 sN,1

s0,N s1,N sN,N

s0,0 s1,0 sN,0

s0,1 s1,1 sN,1

s0,N s1,N sN,N

s0,1 s1,1 sN,1

s0,N s1,N sN,N

sN,Ns1,Ns0,N

sN,1s1,1s0,1

sN,0s1,0s0,0

s0,1 s1,1 sN,1

s0,N

s0,0 s1,0 sN,0

s0,1 s1,1 sN,1

s0,N s1,N

s1,0

sN,N

T m
tT s

t

T m
bT s

b

I = 0 I = ⌊N+2
2 ⌋

Figure: An example result of the second step of the transformation algorithm. Two sequences of edge flips
are applied on top and bottom triangulations, respectively. The resulting two triangulations T m

t and T m
b

are shown on the right.
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The Sequence of Edge Flips

3

2

1 6

5

4

7

9

8

10

sJ,−1 I = 0

sJ+1,N+1

sJ+1,N

sJ,N+1

sJ,N

sJ,1

sJ,0

sJ+1,−1

sJ+1,1

sJ+1,0

I = 1

Figure: An example of the sequence of edge flips applied on one section of the top triangulations T s
t . Left

is the initial triangulation before the edge flips. Right shows the sequence is the newly created edges with
their indices by the flip sequence.
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The Four Types of Edge Flips

sJ,K−1

sJ+1,N+1−I

sJ+1,N−I

sJ,K

sJ,I−1

sJ+1,N+1−K

sJ+1,N−K

sJ,I

sI,J

sN+1−K,J−1sN−K,J−1

sI−1,J sK,J

sN+1−I,J−1sN−I,J−1

sK−1,J

(1) in T s
t upper (2) in T s

t lower (3) in T s
b left (4) in T s

b right

Figure: The four types of edge flips in the algorithm. In these figures, red edges are the input edges, green
edges are the resulting edges. Each pair of red and green edges forms a tetrahedron in the interior.
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The Four Types of Edge Flips

sJ,K−1

sJ+1,N+1−I

sJ+1,N−I

sJ,K

sJ,I−1

sJ+1,N+1−K

sJ+1,N−K

sJ,I

sI,J

sN+1−K,J−1sN−K,J−1

sI−1,J sK,J

sN+1−I,J−1sN−I,J−1

sK−1,J

(1) in T s
t upper (2) in T s

t lower (3) in T s
b left (4) in T s

b right

Figure: The four types of edge flips in the algorithm. In these figures, red edges are the input edges, green
edges are the resulting edges. Each pair of red and green edges forms a tetrahedron in the interior.

Lemma: Let det(s1, s2, s3, s4) denote the determinant of the four points s1, . . . , s4 ∈ R3.

The following determinants on the set of Steiner points are all constant.

det(sJ+1,N+1−I , sJ,K−1, sJ+1,N−I , sJ,K) ≡ 1

det(sJ,I−1, sJ+1,N+1−K , sJ,I , sJ+1,N−K) ≡ 1

det(sI−1,J , sN+1−K,J−1, sI,J , sN−K,J−1) ≡ −1
det(sN+1−I,J−1, sK−1,J , sN−I,J−1, sK,J) ≡ −1

(1)
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The Four Types of Edge Flips
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Lemma: Let det(s1, s2, s3, s4) denote the determinant of the four points s1, . . . , s4 ∈ R3.

The following determinants on the set of Steiner points are all constant.
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Proof of Correctness

Theorem There exists a tetrahedralisation of Φs
N,ε with the set S of interior

Steiner points.

(flipping lower edges)(flipping upper edges)

(flipping right edges)(flipping left edges)

s0,0

s0,0 s1,0 sN,0

sN,N
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t

T m
bT s
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I = 0 I = ⌊N+2
2 ⌋
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The Number of Interior Steiner Points

Theorem The reduced Chazelle polyhedron Φs
N,ε needs (N + 1)2 interior

Steiner points as ε→ 0.
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b1

bN

s0,0
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β1
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a1 αNα1α0

z = xy + ω

z = xy

sN,NaN
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β1 βN

αNα0

. . . . . .
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s0,1
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sN,0
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Summary

� We introduced a class of 3d non-convex polyhedra, so-called irreducible and

indecomposable polyhedra. They are the core object of any 3d indecomposable

polyhedron.

� We showed two classes of such polyhedra by generalising the known examples of

Bagemihl polyhedra and Chazelle polyhedra.

� The optimal number of interior Steiner points for these polyhedra are proven.
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Outlook

� There exists a family of irreducible and indecomposable polyhedra. We only know few of

them. It is interested to further study and construct them.

� How to apply our results to mesh generation, in particular, the 3d boundary recovery

problem? One hint of our result is that a good choice of the locations of Steiner points is

at the spatial cross of two constraining line segments.

� What are the relations between 3d irreducible and indecomposable polyhedra and 3d

non-regular triangulations?
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