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Motivation — Constrained Tetrahedralizations Lok

How to generate a tetrahedralization that contains a set of constraints, i.e.,
edges and (triangular or polygonal) faces?

A constrained edge A B is missing A constrained face (in green) is missing
Image from [Owen 1999]
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3D Indecomposable Polyhedra Lok

There are 3d simple polyhedra which cannot be tetrahedralized without extra
vertices.

>
N1 D

The Schdnhardt Polyhedron [1928]
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3D Indecomposable Polyhedra

Ruppert & Seidel [1993]: It is NP-complete to decide whether a given 3D
polyhedron can be triangulated without using additional points.

. variable niche
illuminant

illuminants A
truth-setting veftices

clause niches

Ruppert & Seidel’s Polyhedron [1993]
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How many Steiner points are necessary?

Figure: The (open) valid domain for placing Steiner points inside the Schénhardt polyhedron. A side view
(left) and a top view (right) are shown.
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The lower bound is Q(n?)
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The Chazelle’s polyhedron [1984]
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Convex Decomposition Algorithms Lok

B Chazelle & Palios [1990]: A non-convex polyhedron of zero genus with n vertices and r
reflex edges can be decomposed into O(n + r2) tetrahedra. .

B Bajaj and Dey [1992]: A non-convex polyhedron of zero genus with n vertices and r
reflex edges can be decomposed into O (nr? + r7/2) tetrahedra in O(nr + r°/2)

space.

The Fence-Off algorithm A test result of the algorithm
from [Chazelle & Palios 1990] implemented in [Palios 1992]
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Convex Decomposition Algorithms Lok

B Erickson [2005]: Every local polyhedra can be decomposed into O(n log n) tetrahedra.
B De Berg & Gray [2010]: Every locally-fat polyhedron with convex fat faces can be
decomposed into O(n) tetrahedra.

B Both local polyhedra and locally-fat polyhedra also include polyhedra which are
tetrahedralizable without Steiner points.

(a) / (b)
/

A locally-fat polyhedron with fat faces whose interior cannot be covered by a
bounded number of fat tetrahedra. [De Berg & Gray 2010]
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Conforming Delaunay Tetrahedralizations ﬁ’“é

B Algorithms: [Murphy, Mount, & Gable 2000], [Cohen-Steiner, Colin de Verdiére, &
Yvinec 2002]

B A conforming Delaunay tetrahedralization may include a lot of Steiner points. An O(n?)
upper bound of Steiner points for 2d conforming Delaunay triangulation is proven
[Edelsbrunner & Tan 1993]. (A recent improvement of this result by Bishop is O (n?%)).
The 3d case is still open.

Figure from [Edelsbrunner & Tan 1993]
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Constrained Delaunay Tetrahedralization Lok

B Algorithms: [Shewchuk 2002, 2003], [Si & Géartner 2005], [Si & Shewchuk 2012].

B The number of Steiner points is (significantly) reduced. However, an upper bound is still
unknown.

A Delaunay tetrahedralization A Constrained DT.
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Interior Steiner Points

B In many applications, the input boundary are required to be preserved.
B Steiner points (if they are necessary) can only be placed in the interior of the domain.

B Neither conforming nor constrained Delaunay terahedralization can satisfy this
requirement.
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Boundary Recovery Methods

B George, Hecht, & Saltel [1991]: Use edge/face swaps together with interior Steiner

points insertion.

B Weatherill & Hassan [1994] Insert Steiner points at where the boundaries and 7~
intersect, delete vertices or relocate them from the boundaries afterwards.

B George, Borouchaki, & Saltel [2003]: Combine the above two methods.

Step0 Steps 1.2.3 Stepd
a, a, -3 5
A\ a A Q X ™
g> ® TS B
N >
58 - s

Fig. 11. Step 0, steps 1, 2. 3, step 4. steps 5. 6, steps 7, 8. and step 9.

George, Hecht, and Saltel 1991
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Weatherill and Hassan 1994
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Experiment 1 (TetGen v1.D5)

Example: mohne (from INRIA Mesh Repository)

Input: 2760 points, 5560 triangles
Output: added 2 Steiner points
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Experiment 1 (TetGen v1.)5)

a Steiner point

a Steiner point

Example: mohne (from INRIA Mesh Repository)

Input: 2760 points, 5560 triangles
Output: added 2 Steiner points
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Experiment 2 (TetGen v1.5)

Example: 03-machinery-part_cut (from INRIA Mesh Repository)

Input: 448 points, 1120 triangles
Output: added 8 Steiner points
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Experiment 2 (TetGen v1.D5)

Example: 03-machinery-part_cut (from INRIA Mesh Repository)

Input: 448 points, 1120 triangles
Output: added 8 Steiner points
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Experiment 2 (TetGen v1.5)

N {
%<

Example: 03-machinery-part_cut (from INRIA Mesh Repository)

Input: 448 points, 1120 triangles
Output: added 8 Steiner points
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B Irreducible and Indecomposable Polyhedra
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Bagemihl’s Theorem [1948] Lok

If n is an integer not less than 6, then there
exists a polyhedron, m,,, with n vertices and the
following properties:
(I) 7 is simple and every one of its faces is a triangle.
(Il) If 7 is a tetrahedron, each of whose vertices is a
vertex of 7, then not every interior point of 7 is an
interior point of 7.

() Every open segment whose endpoints are vertices

of my,, but which is not an edge of m,, lies wholly

exterior to 7, .

The Bagemihl polyhedron
(IV) Every triangle whose sides are edges of 7, is a (19) with 9 vertices

face of mp,.

B The condition (Il) follows from (1), (Ill), and (IV).
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Irreducible and Indecomposable Polyhedra

Definition: A 3d (non-convex) polyhedron P is an irreducible and
indecomposable polyhedron if for every tetrahedron 7, whose vertices is a
vertex of P, not every interior point of 7 is an interior point of P.
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Irreducible and Indecomposable Polyhedra

Definition: A 3d (non-convex) polyhedron P is an irreducible and
indecomposable polyhedron if for every tetrahedron 7, whose vertices is a
vertex of P, not every interior point of 7 is an interior point of P.

Remarks:
B If a polyhedron is irreducible then it is indecomposable, but the reverse is false.

B Bagemihl’s Theorem claims there exist a family of irreducible and indecomposable
polyhedra.
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Irreducible and Indecomposable Polyhedra

Definition: A 3d (non-convex) polyhedron P is an irreducible and
indecomposable polyhedron if for every tetrahedron 7, whose vertices is a
vertex of P, not every interior point of 7 is an interior point of P.

Remarks:

B If a polyhedron is irreducible then it is indecomposable, but the reverse is false.

B Bagemihl's Theorem claims there exist a family of irreducible and indecomposable
polyhedra.

Proposition: If a 3d simple and simplical polyhedron contains no open
segments, then it is reducible. (to be proven)
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Some Well-Known Polyhedra

Schénhardt polyhedron Rambau’s generalisation Chazelle’s polyhedron
1928 2005 1984
Jesson’s polyhedron Rupper & Seidel
1948 1967 1993

illurninants

clause niches
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Generalised Bagemihl Polyhedra
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Extended Bagemihl’s Theorem

Theorem [Goerigk & Si 2015] If n is an integer not less than 6, then there
exists an irreducible and indecomposable polyhedron, o,,, with n vertices and
the following properties:

(I) o is simple and every one of its faces is a triangle.

(Il) Every open segment ¢, whose endpoints are vertices of o, but which is not an
edge of 0,,, does not lie in the interior of o,.

(l) Every triangle whose sides are edges of o, is a face of o,.
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A missing edge [c, d] is crossing a number of triangles that all share a
common line segment [a, b].
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Construction of o, Ly

Choose four non-coplanar points a, b, ¢, d € R3, and a (simple) curve ot
starting at ¢ and ending at d, and -y lies in the intersection of the two open
halfspaces bounded by the triangles cda and dcb (using the right-hand rule

to orient the vertices of the triangles).
Now we will choose k + 2 (k > 0) distinct points, denoted as go, - - - , 8k+1,
on the curve ~y from c to d.
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Construction of o, Ly

(c1) The line segment cd intersects all the triangles abg;, ¢ =0,...,k + 1.

(c2) Given two adjacent points g; and g;+1, fori = 0, ..., k, on the curve -, the point g;+1
and d must lie in the same halfspace bounded by the plane containing abg;.

(c3) Letg;and gy, fori,j = —1,...,k+ 2andi # j, be two non-adjacent points on the
curve v where g_1 := c and gi+2 := d. Without loss of generality, assume ¢ < j.
Then the line segment g;g; (except g—1gr+2 = cd) does not intersect all triangles
abg;, where i < [ < j.

(c4) Letgi, gi+1 and giy2,fori = —1,..., k, be three consecutive points on the curve ~.
Then the three points are neither coplanar with a nor b.
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Construction of o, Gy

Now the polyhedron ,,, n = 6 + k, where k > 0, is constructed by choosing
the boundary faces listed in Table.

(1) | (a,c,d),(b,c,d)
(2) (a7c7g0)7 (b7cag0)’ (aadagk-i-l)? (b7d7gk+1)
@) | (a, &, 8i+1),(b,gi,&i+1), wherei =0,...,k
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Properties of 0, G

B o, satisfies the extended Bagemihl’s Theorem, hence it is an irreducible indecomposable
polyhedron.

B o, is combinatorially the same as 7, in particular, 0 = 7e and is the Schénhardt
polyhedron.

Al=ggt= Nc1=p

Figure: The mapping between the vertices of oy, and the vertices of the Bagemihl polyhedron 7, .
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Theorem [Goerigk & Si] 0,, can be tetrahedralized by adding |—”T_5-| interior
Steiner points.
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Bl Reduced Chazelle Polyhedra
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The Chazelle Polyhedron Loy

The non-convex polyhedron constructed by Chazelle, known as the Chazelle
polyhedron, establishes a quadratic lower bound on the minimum number of
convex pieces for the 3d polyhedron partitioning problem.

Z

Figure: Left: A saddle surface (a hyperbolic paraboloid). Right: The Chazelle polyhedron with three
notches, i.e., N = 2, on the top and the bottom faces, respectively.
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Figure: Left: A reduced Chazelle polyhedron ®3 .. Right: The top triangulation 7 includes the set of top
faces as viewed from the point (0, 0, +00) toward the —z direction. The bottom triangulation 7} includes
the set of bottom faces viewed from the point (0, 0, —co) toward the +z direction.
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Sleator et al [1988] showed the correspondence between a sequence of edge
flips and a tetrahedralisation of a 3d convex polyhedron.

Figure: Left: A tetrahedralisation of an octahedron with four tetrahedra. Right: A sequence of edge flips
which corresponds to the tetrahedralisation on the left.
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ax SN |S1N SNN g py

a) e—— ——e
S01 |S11 SN

ay o—— — ]l
$00 |510 SN.O
@ ay ceeoay

Figure: The interior Steiner points, {s; ; | 4,7 = 0,..., N}, are placed directly at the intersections of
the two set of lines in the xy-plane and all lie on the saddle surface z = zy + w, where 0 < w < €.
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A Modified Polyhedron

SON+1 SLN+1 -+ SNN+1 SN+ILN+1

S—1N+1  SON+1SILN+1 ---  SNN+1 SN+1LN+1 S—1,N+1
—
===
So.N [ [S1.v SN.N . SON  SIN = o
S—1,N SN+1LN S—1,N SN+1,N
S-11 SN+1.1 S-11 SN+1.1
S0 (S S) S0; S11 SN,1
5.10 SN+1.0 S-1 SN+1.0
0.0 1.0 4 2 S1.0 SN0
—
S-1-1 80,-1 S1-1 .- SN-1 SN+l-1 S-1,-1 S0-1 S1-1 SN~1  SN41,-1
s s
Ti Ty

Figure: The modified top and bottom triangulations of <I>S . There are four new vertices: s 1,1,
SN+1,—1,8—1,N+1,and SN+1,N+1- The newly added trlangles are shown in yellow.
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S—1N+1  SON+1SIN+1 ---  SNN+1 SN+LN+1 S—1N+1  SON+1SILN+1 ---  SNN+1 SN+LN+1

syl |51 S K] . e, X .

S-1,N SN+1N S-1N¢ SN+1N

S-11 SN+1,1 S-1,1 SN+1,1
s s s : W

S$-1.0 SN+10 S-14 SN+10
1) 0 g 0

S-1.-1 50,-1 S1,-1 .- SN—1  SN+41,-1 S-1-1 S50,-1 S1,-1 .- SN—1  SN+41,-1

T Ty

Figure: An example result of the first step of the transformation algorithm. All Steiner points are inserted by
splitting the edges.
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vty o (v |t x v s v
= V/IWININININ VIV === —_ "
5 5 9 sh/|sih A 501/ |11 SN
190, |90, 9 $0.0/ (81,0, SN 500,/ 1510, SN
(flipping upper edges)  (flipping lower edges)
S0\ 51 50,8\ ST SN.N 50.\[51V SN
7 R "
B SN | ST SN Svg S\ A1
B o L0 N g [P o
(flipping left edges) (flipping right edges) )
I1=0 1=N§?)

Figure: An example result of the second step of the transformation algorithm. Two sequences of edge flips
are applied on top and bottom triangulations, respectively. The resulting two triangulations 7, and ’7;7’”
are shown on the right.
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SIN+1  SJ4+LN+1

4
SIN STH1LN
3 91
2 5 87
SJ1 SJ+1,1 4
I 6 10
3 /1 V1
57,0 SJ+1,0
7
S7-1 SJ41,-1 1=0 I=1

Figure: An example of the sequence of edge flips applied on one section of the top triangulations 7,°. Left
is the initial triangulation before the edge flips. Right shows the sequence is the newly created edges with
their indices by the flip sequence.
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SJ+LN+1-K

STHLN+1-1

1 SI-1J  SIJ SKk-1J  SK.J
| SJH1LN-T | | STHLN-K
SLK | Spp |
SJK-17 i SpI-1 1 1 ——
\ | i | SN-K.J-1 SN+1-K.J—1 SN-I,J-1 SN+1-IJ-1
(1) in T3> upper (2)in T;> lower (3)in T left (4) in T, right

Figure: The four types of edge flips in the algorithm. In these figures, red edges are the input edges, green
edges are the resulting edges. Each pair of red and green edges forms a tetrahedron in the interior.
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(1) in T, upper

SIHLN+1-1

| SJ+LN-T

SJ+LN+1-K

AN

SN-IJ-1 SN+1-I,J-1

SI-1J  S1J SK-1.]  SK.J
| SJ+1,N-K
SJI v |
Spr-1' 1 —
' ' SN-K.J-1 SN41-K.J-1
(2)in T;% lower (3)in T, left

(4) in T, right

Figure: The four types of edge flips in the algorithm. In these figures, red edges are the input edges, green
edges are the resulting edges. Each pair of red and green edges forms a tetrahedron in the interior.

Lemma: Let det(s1, s2, S3, S4) denote the determinant of the four points s1, . .

The following determinants on the set of Steiner points are all constant.

det(Sy41,N41—1,8J,K—1,S8J4+1,N—1,85,k) =1

) =1
det(Sr—1,7, SN+1—K,J—1,SI,J; SN—K,Jj—1) = —1
det( ) =-1

det(S7,1—1, ST+1,N+1—K, SJ,I,SI+1,N—K

SN+1-I1,J—1,SK—1,7,SN—1I,J—1,SK,J

.,814 €R3.
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SIN+L  SJH1LN+1
4
SN SJ+1LN
3 91
2 5 87
SJ1 SJ+1,1 i
v/7<46 10
57,0 57410 - -
7
I=0 I=1

Lemma: Let det(s1, s2, 3, s4) denote the determinant of the four points s1, . .

The following determinants on the set of Steiner points are all constant.

.,S4€R3.

det(S741,N41—1,87,K—1,SI+1,N—I,S5,k) =1
det(ss,r—1,87+1,N+1-K,S5.1,57+1,N-K) =1 1)
th(S]_LJ,$N+1—K,J—17SI,JysN—K,J—l) =-1
det(SN41-1,0-1,SK—1,7,SN—1,0-1,8K,7) = —1
\\
AS)
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Proof of Correctness

Theorem There exists a tetrahedralisation of <I>§\, - with the set S of interior

Steiner points.

vty v v ot v
7
st/ Nl p A sh/
900, |50, 9 Y S0.0, 81,0, SN
(flipping upper edges)  (flipping lower edges)
SN\ 81 S0\ ST, SNN
7
S S s !
S o 3 v o

(flipping left edges) (flipping right edges)

I1=0

S0,1 S1,1, SN
S0,0, S10, SN
so N[5 )
Sv SN SN
e [ v
_ N2
=177

T

m
b
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Theorem The reduced Chazelle polyhedron ®%; _ needs (N + 1)? interior
Steiner points as € — 0.

By B . By
ay SON_[S1.N SNN g by
— —_— — .
a; o—— —e
501 |S11 SN1
apy e—— —e by
500|510 SN0
g a L.ay
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EH Summary & Outlook
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Summary

B We introduced a class of 3d non-convex polyhedra, so-called irreducible and
indecomposable polyhedra. They are the core object of any 3d indecomposable
polyhedron.

B We showed two classes of such polyhedra by generalising the known examples of
Bagemihl polyhedra and Chazelle polyhedra.

B The optimal number of interior Steiner points for these polyhedra are proven.
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Outlook : mé

B There exists a family of irreducible and indecomposable polyhedra. We only know few of
them. It is interested to further study and construct them.

B How to apply our results to mesh generation, in particular, the 3d boundary recovery
problem? One hint of our result is that a good choice of the locations of Steiner points is
at the spatial cross of two constraining line segments.

B What are the relations between 3d irreducible and indecomposable polyhedra and 3d
non-regular triangulations?
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