On a unique operator for mesh generation AND Adaptation

Adrien Loseille

INRIA - Projet Gamma3 - Saclay, France

Tetrahedron Workshop Liège, July 2016

- Motivations and context
- 2 Topology : unique cavity-based operator Applications : Regular Adaptation, Parallel, CAD projection
- Geometry : Generalized Advancing-Point Applications: Metric-aligned, Metric-orthogonal, ...

Scope of the talk

- How to generate frontal-like, adapted, aligned, meshes ... within a unique framework ?
- **Topology** : We use a single mesh modification operator
- Geometry : We define a single advancing-point strategy

Context : metric-based framework

Fundamental concept: The mesh generator distance and volume computation are computed in a Riemmanian metric space

[George, Hecht and Vallet., Adv. Eng. Software 1991]

• Euclidean metric space: M : $d \times d$ symmetric definite positive matrix

$$\begin{aligned} \langle \mathbf{u} \,, \, \mathbf{v} \rangle_{\mathcal{M}} &= {}^{t} \mathbf{u} \mathcal{M} \mathbf{v} \implies \ell_{\mathcal{M}}(\mathbf{a}, \mathbf{b}) = \sqrt{{}^{t} \mathbf{a} \mathbf{b} \ \mathcal{M} \ \mathbf{a} \mathbf{b}} \\ & |K|_{\mathcal{M}} &= \sqrt{\det \mathcal{M}} |K| \end{aligned}$$

Distance unit ball is an ellipse

$$(\mathbb{R}^{2}, \mathcal{I}_{2})$$

1.

Riemannian metric space: (M(x))_{x∈Ω}

$$\ell_{\mathcal{M}}(\mathbf{ab}) = \int_{0}^{1} \sqrt{t \mathbf{ab} \ \mathcal{M}(\mathbf{a} + t \mathbf{ab}) \mathbf{ab}} \, \mathrm{d}t$$
$$|\mathcal{K}|_{\mathcal{M}} = \int_{\mathcal{K}} \sqrt{\det \mathcal{M}} \, \mathrm{d}\mathcal{K}$$

Context : metric-based framework

Fundamental concept: The mesh generator distance and volume computation are computed in a Riemmanian metric space

[George, Hecht and Vallet., Adv. Eng. Software 1991]

Scope of the meshing algorithm: Generate a unit mesh w.r.t $(\mathcal{M}(x))_{x \in \Omega}$

$$\forall \mathbf{e}, \ \ell_{\mathcal{M}}(\mathbf{e}) \approx 1 \text{ and } \forall \mathcal{K}, \ |\mathcal{K}|_{\mathcal{M}} \approx \begin{cases} \sqrt{3}/4 & \text{in } 2D \\ \sqrt{2}/12 & \text{in } 3D \end{cases}$$

Inputs $(\mathcal{H}_0, \mathcal{M}_i)_{i \in \mathcal{H}}$

 $\textbf{Output} \ \mathcal{H}$

Local Adaptive Remeshing

Step 1: Generate a unit-mesh

- Collapse all edges of size lower than $1/\sqrt{2}$
- Split all edges of size greater than $\sqrt{2}$

Step 2: Mesh optimization

- Perform point smoothing to improve $Q_{\mathcal{M}}$
- Perform edge and face swaps to improve $Q_{\mathcal{M}}$

Local Adaptive Remeshing

Numerous 3D local adaptive remeshers have been developed:

- EPIC [Michal and Krakos, AIAA 2012]
- Feflo.a [Loseille and Lohner, AIAA 2010]
- Forge3d [Coupez, REEF 2000]
- Fun3d-Refine1/2 [Jones et al., AIAA 2006], [Park and Carlson, AIAA 2010]
- MAdLib [Compere et al., IJNME 2010]
- MeshAdap [Li et al., IJNME 2005]
- Mmg3d [Dobrzynski and Frey, IMR 2008]
- Mom3d [Tam et al., CMAME 2000]
- Pragmatic [Rokos et al., Springer 2013]
- Tango [Bottasso, IJNME 2004]
- Libadaptivity [Pain et al., CMAME 2001]
-

Outline

Motivations and context

2 **Topology:** Unique cavity-based operator

3 Geometry : Generalized Advancing-Point

Unique Cavity-Based Operator

Issues:

- Many mesh modification operators: split, collapse, swap, relocation and all possible combinations
- Many kinds of elements: triangles, quads, tetrahedra, prisms, pyramids, hex, ...
- Many kinds of meshes: surface, volume, boundary layer, structured, curved,
- Severals kinds of geometry: manifold, non manifold, ...

Conclusion:

It becomes too difficult to (i) maintain the code and (ii) gather all functionalities

We propose a unique cavity-based operator inspired from the Delaunay method [Loseille and Löhner, AIAA 2010, Loseille et Menier, IMR 2013]

Delaunay Kernel

Insertion of *P* (incremental Delaunay context)

$$\mathcal{H}_{k+1} = \mathcal{H}_k - \mathcal{C}_P + \mathcal{B}_P$$

[Bowyer, CJ 1981], [Watson, CJ 1981], [Hermeline, RAIRO 1982], ...

Robust extension to meshing \implies Constraint cavity and cavity correction

[George et al, ICSE 1990], [George et al, CMAME 1991], [George et al, IJNME 1992], ...

INRIA, GAMMA3

Unique meshing operator

Each operator \equiv a node (re)insertion:

$$\mathcal{H}^{k+1}\equiv\mathcal{H}^k-\mathcal{C}+\mathcal{R}$$

Collapse $\mathcal{H}^{k+1} = \mathcal{H}^k - \mathcal{C}_{\textit{ball}(B)} + \mathcal{R}_A$ $\mathcal{H}^k - \mathcal{C}_{ball(B)}$ HH Insertion $\mathcal{H}^k - \mathcal{C}_{\textit{shell}(A,B)}$ $\mathcal{H}^{k+1} = \mathcal{H}^k - \mathcal{C}_{\textit{shell}(A,B)} + \mathcal{R}_P$ \mathcal{H}^{k} E Swap \mathcal{H}^{k} $\mathcal{H}^{k} - \mathcal{C}_{shell(A,B)}$ $\mathcal{H}^{k+1} = \mathcal{H}^k - \mathcal{C}_{\textit{shell}(A,B)} + \mathcal{R}_P$

Unique meshing operator

Each operator \equiv a node (re)insertion: $\mathcal{H}^{k+1} \equiv \mathcal{H}^k - \mathcal{C} + \mathcal{R}$

Cavity correction(s) to create combination of meshing operators

Example: Relocate vertex A to new position A_{new} requires

1 edge collapse + 1 edge swap + 1 vertex relocation

Unique meshing operator

Each operator \equiv a node (re)insertion: $\mathcal{H}^{k+1} \equiv \mathcal{H}^k - \mathcal{C} + \mathcal{R}$

Cavity correction(s) to create combination of meshing operators

Example: Relocate vertex A to new position A_{new} requires

1 node reinsertion with the appropriate cavity definition

Red edges have no visibility w.r.t $A_{new} \implies$ Correct (enlarge) the cavity Final cavity bold blue edges

INRIA, GAMMA3

- Do either line or surface or volume
- Non manifold geometries
- Metric-based framework
- Easy to maintain
- Multiple operators for free (collapse + swap, many swaps, split + collapse, ...)
- Speeds intel Core i7 at 2.7Ghz Laptop Cavity-based collapse 20 000 points removed/sec Cavity-based insertion 20 000 points inserted/sec

Overview of applications (in serial)

Anisotropic mesh generation [Loseille and Menier, IMR 2013], boundary layer and hybrid [Loseille and Löhner, IMR 2012], coarse-grained parallel [Loseille, Menier and Alauzet, IMR 2015], CAD projection with volume.

- Aerodynamics
- Unsteady flows
- Boundary-layer mesh generation
- Slug flows
- Free surface flows

Non Manifold Case

- Fractured Reservoir engineering
- Highly complex non-manifold geometries
- Maximal edge connectivity of 6 1783 internal patches
- Geometry courtesy of Distene

Once the cavity-inserter support non-manifold components:

 \implies Works for unit-mesh phases, Optimization, Surface projection, ...

INRIA, GAMMA3

Non Manifold Case

- Fractured Reservoir engineering
- Highly complex non-manifold geometries
- Maximal edge connectivity of 6 1783 internal patches
- Geometry courtesy of Distene

- Remeshing is conformed to the surface (definition)
- Conservation of internal boundary faces/ non manifold edges

verts : 425822 # tets: 243158

Parallel case: Blast on a London Tower Bridge

- High-resolution of the shock wave propagation
- Initial mesh : 3837269 vertices 477852 tris and 22782603 tets
- Final mesh : 185 360 428 vertices 4 567 306 tris and 1 108 515 564 tets
- Parallel remeshing time is 14 min on 120 cores The total CPU time is 23 min (IOs, final gathering)

Level	% done	# of tets in interface	# of tets inserted	CPU time (sec.)	# of cores used
1	96%	44 490 595	1 051 662 221	415	120
2	100%	4 4 18 356	1 104 097 208	110	59
3	100%	10 084	1 108 515 564	36	1

 \implies Constrained cavity operators for coarse-grained parallelization

INRIA, GAMMA3

Outline

Motivations and context

2 Topology: Unique cavity-based operator

3 Geometry : Generalized Advancing-Point

• Uniform speed for any operators

- Speed (cavity) versus quality (advancing-front)
- Combine both worlds : (try to) puts the point at the right place
- \implies Advancing point

[Lohner and Onate, CNME 1998], [Remacle et Al., IJNME 2012], [Loseille, IMR 2014], [Marcum et Alauzet, IMR 2014]

Init:

- 1. Initialize a list of points (front) $\{P_i\}_i$ from the boundary (line or surface)
- 2. From $\{P_i\}_i$, create a heap list of size/direction $(P_i, h_k, \mathbf{u}_k)_{ik}$.

Align edges along the shortest size eigen direction

6 (2D) and 24 (3D) points are proposed

Align edges along eigen directions 4 (2D) and 6 (3D) points are proposed

[Lohner and Onate, CNME 1998], [Remacle et Al., IJNME 2012], [Loseille, IMR 2014], [Marcum et Alauzet, IMR 2014]

Init:

- 1. Initialize a list of points (front) $\{P_i\}_i$ from the boundary (line or surface)
- 2. From $\{P_i\}_i$, create a heap list of size/direction $(P_i, h_k, \mathbf{u}_k)_{ik}$.

Advancing-point: [Create all the vertices to be inserted]

- 1. Pop the first heap list entry, creates $P_{new} = P_i \pm h_k \mathbf{u}_k$
- 2. Update length/position according of P_{new} to Riemannian metric field.
- 2. Metric-based length filtering, add Pnew for insertion
- 3. Update the heap list with $(P_{new}, h_k, \mathbf{u}_k)_k$
- 4. If the heap list is not empty goto 2

[Lohner and Onate, CNME 1998], [Remacle et Al., IJNME 2012], [Loseille, IMR 2014], [Marcum et Alauzet, IMR 2014]

Init:

- 1. Initialize a list of points (front) $\{P_i\}_i$ from the boundary (line or surface)
- 2. From $\{P_i\}_i$, create a heap list of size/direction $(P_i, h_k, \mathbf{u}_k)_{ik}$.

Advancing-point: [Create all the vertices to be inserted]

- 1. Pop the first heap list entry, creates $P_{new} = P_i \pm h_k \mathbf{u}_k$
- 2. Update length/position according of P_{new} to Riemannian metric field.
- 2. Metric-based length filtering, add Pnew for insertion
- 3. Update the heap list with $(P_{new}, h_k, \mathbf{u}_k)_k$
- 4. If the heap list is not empty goto 2

Insertion:

1 Use cavity-based operators

 \bullet Sorting by minimal sizes \Longrightarrow avoid transition in highly anisotropic areas

$\mathsf{Standard}$

Advancing-point

- Reduced large angles
- Local alignement/orthogonality

Unicity of advancing-point scheme

For isotropic metric, we do not have privileged directions

• Use the local surface features (principal direction)

Unicity of advancing-point scheme

For isotropic metric, we do not have privileged directions

- Use the local surface features (principal direction)
- Use the distance to the body

Anisotropy and Alignment: Surface Remeshing

- High Lift geometry : 194810 verts 389616 tris
- Highly anisotropic surface meshes O(1 10000)
- Surface mesh is far from best-practice grids

Anisotropy and Alignment: Surface Remeshing

- High Lift geometry : 194 810 verts 389 616 tris
- Highly anisotropic surface meshes O(1 10000)
- Surface mesh is far from best-practice grids

- Metric-alignment and orthogonality produces high quality meshes
- Alignement reduces the error of the surface approximation

- F117 geometry
- RANS-SA at Mach 0.8, Reynolds = 5×10^{6}
- 5759136 vertices, 339530 triangles and 33967205 tetrahedra
- 30 Layers, grow rate of 1.3, $y^+ = 0.03$
- Uniform surface mesh
- Multi-scale multi-field metric: density, velocity, pressure in L²norm
- Metric-aligned approach on surface and volume
- 15 iterations, with 5 iterations at fixed complexity

 $[750\,000, 1\,500\,000, 3\,000\,000]$

Initial mesh

• Automatic quasi-structured meshes of leading/trailing edges

- 4052725 vertices
- 555 650 triangles
- 23816402 tetrahedra

- 4 052 725 vertices
- 555 650 triangles
- 23816402 tetrahedra

Quasi-structured elements are generated when the metric features orthogonality components

INRIA, GAMMA3

Anisotropy and Alignment: Blast example

Conclusion

- Unique cavity-based operator
 - Cavity initialization defines the initial operation
 - Multiple operators defined naturally
 - Ease of maintenance and robustness
 - Highly flexible remeshing process
- Metric-orthogonal, Metric-aligned
 - Favor alignment and the creation of quasi-structured elements
 - Work in 3D, for non manifold geometries

On going work

- Implement the very good ideas we had yesterday night
- Wait tonight for maybe even better ideas

Thank you for listening

