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Introductory Remarks
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Worries About LES�
• Aerodynamics / Aeroacoustics: RANS � LES � DNS

– Increase in Spatial/Temporal Order [4th-6th Order]

– Increase in Nr. Of Gridpoints/DOF: O(103-106) [MPI OK]

– Increase in Nr. Of Timesteps: O(103-105) [MPI Limiting]

• Exascale Machines
– Massively Parallel

– Energy Consumption ~ Access To Memory

– Motto: `Flops Are Free, Memory is Expensive’

• � Need High Order Schemes With:

– Minimal Memory Access

– Minimal Transfer Between Domains/MPI Nodes
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Worries About Hardware�

• Advances in Hardware Uneven

• CPUs > RAM > Network

• � Red Shift � Hardware Crisis

• CPUs/GPUs: Transfer Rate to Memory Limit 

Performance

– Can Predict Speed By Just Counting Memory Access

– `FLOPS Are Free’

• Even Worse for MPI/Network Transfer
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Lid-Driven Cavity, FDFLO Timings

Laptop, 1 Core Running
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FEFLO: FEM-FCT Timings

MPI Limit !

Nelem>1Bels

Nproc=O(50K)
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Worries About Numerics�

• Higher Order Schemes: Finite Difference 

Methods (FDMs) Orders of Magnitude Faster 

Than FEM/DGMs

– � Revisit FDMs

log(CPU_FEM/CPU_FDM)

Factor > 103 !
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Worries About Mesh Adaptation

• LES: Most Elements in LES Region(s)

• Need Isotropic Elements

• Lengthscale(s) Known

• � Gains From Stretched Elements Limited

• (Perhaps4)
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CFD Crisis

• If The Time To Do 1 Timestep Is Limited (MPI)

• If We Need > 1012 Elements

• If We Need > 106 Timesteps

• � 3-4 Weeks on 106 Cores

• � Windtunnel Serious Contender Again

– 3-D Printing

– Fast Machining/Instrumentation

– Fast Evaluation/Sweep
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Current CFD Leading Edge

• Only Partially in Aerospace

• Wind Engineering / Light Structures

– Always LES + Complex FSI � Long Duration

– Large Domains (Upstream Influence, Wind)

• Automotive

– Always LES, Fluid + Noise

• `Complex Physics’

– Chemistry, Particles, FSI, 4
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Meshing
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Overarching Motto: 

No Mesh, No Run !
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Unstructured Grids

• Advancing Front: One Element At A Time
– Fill Empty Space

– All Lengthscales Local

– Loss of Mathematical Rigour: Face Crossings

– Loss of Mathematical Rigour: Sweep and Retry

• Delaunay: One Point At A Time
– Modify Exiting Grid (Cavity Operator)

– Lengthscales Progressively Local

– Loss of Mathematical Rigour: Accept Only Good Tets

– Loss of Mathematical Rigour: Boundary Recovery
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Advancing Front

• Increase Speed For:

• Scalar

• SMP (Shared Memory Parallel)

• DMP (Distributed Memory Parallel)
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Introduce Multiple Elements ?

1 Element (Usual)                                   Multiple Elements (3, 8, �)                                  
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Introduce Multiple Elements ?

• Idea: Introduce New Element As Before

• If New Point:

– See If Neighbourhood `Open’ [Adjacent Faces]

– See If Multiple Elements Possible

– Add New Elements/Points/Faces

• Several `Multiple Element’ Topologies Possible

• Easy to Add to Usual Advancing Front

• Status: Implemented, Initial Timings Inconclusive
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Fast Gap Closure ?

• Idea: Exploit Adjacent Face Info/Topology
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Fast Gap Closure ?

• Idea: Introduce New Element As Before

• See If Neighbourhood `Closed’ [Adjacent Faces]

• See If Immediate Closing Possible (Quality)

• Easy to Add to Usual Advancing Front

• Status: Not Yet Implemented
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Scaling Up…
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Scaling Up (1)

• Current Runs: O(103) Procs/Cores

– � Complete Mesh Still on Large-Memory Node 

– Mature (Scalar) Grid Generators � Generate 

Mesh on Large-Memory Node

– Splitting on Large-Memory Node

– Field Solver(s): Distributed

– Coupled Codes: Info Transfer Via: All to 1; 1 to All
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Scaling Up (2)

• Foreseeable Future: O(106) Procs/Cores �

Factor 103 �

– Complete Mesh Will Not Fit on Any Node

– Need Parallel, Distributed Mesh Generation

– Need Parallel, Distributed Splitting/Repartitioning

– Need Parallel, Distributed Info Transfer for 

Coupled Runs
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Unstructured Grid Generators
• Scalar 

• Large Variation in OPS

• Parallel by `Distance‘

• � Porting to Parallel Machine:

– Break Up Problem Into Pieces

– Each Processor a Piece

– Interprocessor Transfer of Info

– Assemble
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SMP Grid Generation
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SMP-Parallel Advancing Front (2000)
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Shift + Mesh
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Parallel Advancing Front

• WHILE: Active Faces Left:

– Build Octree of Active Faces

– Retain Octants With Faces Generating Small 

Elements

– (Shift) + Mesh Octants in Parallel

– Reassemble Remaining Faces

• END WHILE
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Garage (2000)

Uniform; O(10Mtet)
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Shared-Memory Parallel GridGen

• Working, BUT:

• Scalability Limited [nprol=32]

– Front-Based Parallelism

• Mesh Size Limited [RAM]

– 109 Elements >  250 Gbytes RAM [!]

• � Need Distributed Memory Parallel GGen

• � Need Domain-Based Parallelism
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DMP Grid Generation
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Massively Parallel Mesh Generation

• Key Requirements:

• Very Large Meshes � Distributed Memory �

• Simple, Effective Definition of Domain to be 

Gridded

– In/Out Problem

• Parallel Load Balancing

– During Generation: Advancing Front

– Post-Generation: Smoothing, Diagonal Swapping
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DMP Parallel Mesh Generation
• Löhner, Camberos, Merriam, Shostko [1992 (!), 1995]

– Advancing Front; Domain Splitting of Background Grid [2/3-D]

• deCougny, Shepard, Ozturan [1994, 1995]

– Modified Octree, [2/3-D]

• Okusanya, Peraire [1996, 1997]

– Delaunay [2-D, 3-D]

• Christochoides, Chew, Nave [1997, 2003, 2005] 

– Domain Decomposition, 2-D

• Weatherhill, Hassan, Tremel [2006]

– Delauney [3-D]

• Ivanov, Andrae, Kudryavtsev [2006]

– Domain Decomposition
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Massively Parallel Mesh Generation

• Shortcomings of 1st Generation ParGen:

• No Simple, Effective Definition of Domain to 

be Gridded

• � Solution: Domain-Defining Grid (DDG)

• Loss of Parallel Load Balancing After 1st Pass 

(`log-Trap’)

• � Solution: Re-Splitting of DDG
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Domain Defining Grid (DDG)
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Massively Parallel Mesh Generation

• Step 1: Define the Domain to be Gridded

• Easiest Form of Definition: Mesh

• BUT: Need Fine Surface Mesh �

• Use Advancing Front With Fine (Required) 

Surface Mesh

• Generate Maximum Possible Element Size in 

Domain

• � `Domain Defining Grid’ (DDG)

• Split DDG to Distribute Work
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Massively Parallel Mesh Generation

• Suppose: Volume Mesh of 109 Points

• � Surface Mesh of 106 Points

• � DDG of  O(106) Points

• � Can Fit Surface Mesh and DDG Into Each 

Processor
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Cube: Coarsest Possible Mesh
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Cube: Coarsest Possible Mesh
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Cube: Coarsest Possible Mesh
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Massively Parallel Mesh Generation

• Step 2: Split DDG to Distribute Work

• Can Use any Domain Decomposition Technique

– Even Scalar Ones

• Used Here: 

– Advancing Front

– Recursive (Coord/Moment) Bisection 

– Peano-Morton-Hilbert Space Filling Curve

• Result: Each Processor Has Surface Faces, 

DDG+SplitInfo
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Massively Parallel Mesh Generation

• Step 3: Generate the Mesh in Parallel

• Done in Passes; In Each Pass:

– Filter Surface Faces Required + Mesh

– Send Active Faces to Proper Processors/Domains

– Store Mesh in Processor/Domain (Distributed)

• Result: Each Processor Has Mesh It Generated

• Pass 1: Take Initial Splitting of DDG

• Pass 2,4: Add 1-2 Layers From Neighbours With 

Higher/Lower Domain Nr.

– Integer / Size / Distance4
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Massively Parallel Mesh Generation

• Step 4: Redistribute the Mesh

• Assign Element to Domain Based on Lowest 

Point-Nr. In DDG Domain/Region

• Send to Required Processors

– Needs Colouring Scheme

• Remove Duplicate Points

– Use Octree Search

• Result: Each Processor Has Mesh It Generated
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Massively Parallel Mesh Generation

• Step 5: Improve the Mesh

• Fix the Points That Are at the Boundary of the 

Mesh

– True Boundary

– Boundary of Domain/Processor

• Perform Edge Collapse/Smoothing/Diagonal 

Swap/4

• Step 5a: Redistribute the Mesh Again and 

Redo Step 5

• Result: Each Processor Has Mesh It 

Generated, Improved



CFD Center George Mason University

Massively Parallel Mesh Generation

• Step 6: Output the Mesh

• Identify the Boundary Points in this Domain

• Output the Mesh in Parallel
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Changes to Usual Advancing Front

• If Point of Face Outside DDG: Mark + Skip

• If Ideal (New) Point Outside DDG: Mark + Skip

• If Ideal (New) Point Too Close to DDG 

Boundary: Skip

• If Side Of New Element Crosses DDG 

Boundary: Skip

– Imposed Via NN Search
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Point of Face Outside DDG
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Ideal Point Outside DDG
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Close Point Outside DDG
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Edge of New Element Crossing 

DDG Boundary
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Cube: Initial Front + DDG 

Allocation
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Cube: DDG + Front After Pass 1
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Cube: DDG + Front After Pass 2
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GARAGE: Version 2
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Garage: Timings

2.730.349346121 M128432SGI ITL

5.850.187646121 M32132SGI ITL

8

1

1

1

8

1

8

nprol

0.790.40325041010 M51264SGI ITL

2.510.1606048972 M6464Cray AMD

0.062

0.048

0.234

0.075

0.052

AbsSpeed

[Mels/sec]

3.871954121 M1616Cray AMD

6.022512121 M88Cray AMD

3.66516121 M648SGI ITL

9.421605121 M88SGI ITL

6.542293121 M81Xeon(1)

RelSpeed

[Kels/sec/core]

Time 

[sec]

nelemncorenprocMachine
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Optimal Space-Filling Tets
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Optimal Space-Filling Tetrahedra (1)
• Optimal (Equilateral) Tetrahedron: α=70.52o

• � NOT Space-Filling

• � Which is Best ?

• Sommerville 1923

• Senechal 1981

• Naylor 1999

• 4.
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Optimal Space-Filling Tetrahedra (2)
• Desired: Space-Filling With 

– max(min) angle(s), max(min) angle(s)

– max(side)-min(side) --> min

• Approach 1:
– Take Parallelepiped (Hexahedron)

– Deform With Affine Transformation

• Keeping Faces Parallel

– Measure Quality of Tetrahedra

– Run Through Optimizer

• Approach 2:
– Invoke h-Refinement Argument

• Parent = Children

– Deform

– Measure Quality of Tetrahedra

– Run Through Optimizer
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Optimal Space-Filling Tetrahedra (3)
• Same Result for Both Approaches: ISOTET, 

BCC Lattice

• l
min

=1.0, l
max

=1.157

� α
1
=α

2
=α

3
=α

4
=60.0o, α

5
=α

6
=90.0o
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Optimal Space-Filling Tetrahedra (4)

• Graded ISOTET, BCC Lattice Grids:

• Even H-Refined Grids Have Very Good Angles

α
min

=O(30.0o), α
max

= O(90.0o)

• Unlike Graded Grids From Cartesian Point 

Distributions 
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Incorporation in General Ggen

• Key Idea: Replace `Ideal’ Point Position by 

Closest

– Isotet Point

– Cartesian Point

• For Graded Grids:

– Take: hmin= min(isotropic element size)

– Given Current h(x): h = hmin 2α � α � hc= hmin 2 int(α)

• � Very Simple Change
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Comparison for Graded Meshes

• Cartesian/Isotet Placement Will Require More 

Points

– Increase in Mesh Size Always By a Factor of 2

• Worst Case Scenario: 8:1 (!)

– Take Box; Corner 1: hmin ; Rest: 1.999 hmin

• Grading in 1-D: 4:3 (!)

– Take Box; Corner 1: hmin ; Rest: h= hmin (1+ αx)

• Realistic Grids: Somewhere Between 4
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Regular Point Distributions

• Reflections Reported at 1:2 Transitions

• � Attempt `Softer’ Transitions

• Increase Factor: 1.5

• Increase Factor: 1.414 [=sqrt(2)]

– `Double Every 2nd Jump’

• Both Possible

• Same Procedure As Before: 

– Find Ideal Point

– Get Closest Cartesian/Isotet/BCC Point & Check
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cincr=1.5
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cincr=1.4
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cincr=1.5
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cincr=1.4
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Sphere in Sphere
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ncart=0
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ncart=10
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ncart=11
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ncart=15
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ncart=16
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Closeup: ncart=0
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Closeup: ncart=10
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Closeup: ncart=11
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Closeup: ncart=15
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Closeup: ncart=16
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Advancing Front Object 

Generation
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Option 1: Objects From Spheres
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Option 2: Use Triangulated Objects

• Higher Degree of Accuracy / Realism

• Can Re-Use Large Portion of Advancing Front 

Tet-Meshing Techniques

– Close Faces

– Crossing Checks

– 4
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Advancing Front Object Generation
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Move and Enlarge
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Move To Object
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Tetrahedra of Different Sizes
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Cubes
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Prisms
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Octahedra
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Icosahedra
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Mix
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Short Tetrapods
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Long Tetrapods
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Mechanical Part, Cubes
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Mechanical Part, Mix
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Truckload of Bricks
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Breakwater
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Breakwater
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Conclusions and Outlook (1)

• CFD Crisis:

– Successful Parallelization in Space

– No Parallelization in Time (Physics ?)

– LES: Most Points in Isotropic Element Regions

• Advancing Front:

– Attempts to Improve Scalar Speed

• Parallel (Distributed, MPI) GridGen Working

– Key Ideas: Domain Defining Grid, Parallel 

Advancing Front, 4

– Good Scalability Once Mesh Size > 1 Mel/Core
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Conclusions and Outlook (2)

• Parallel Domain Decomposition Working

– Key Ideas: Bounding Boxes, Octrees, Additional 

Layers, 4

• Current Efforts

– Multimaterial

– Link to BL Modules

– Faster Generation of DDGs

– Smaller DDGs (Planar Surfaces)



CFD Center George Mason University

Conclusions and Outlook (3)

• Optimal Space-Filling Tets

– Exploit in Solver

• Arbitrary Object Generation

– Working

– Any Mix of Objects Possible

– Interesting for Basic Physics Studies


