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Computational Challenges in PDE Discretizations1

Geometry and Grid Generation
I ... “remains one of the most important bottlenecks for large-scale

complex simulations”
I “Curved mesh elements for higher order methods”, “tight CAD
coupling and production adaptive mesh refinement (AMR)”

Numerical Algorithms
I “Discretization techniques such as higher-order accurate methods

offer the potential for better accuracy and scalability, although
robustness and cost considerations remain”

I “Linear and nonlinear solvers ... that are ... near optimal”, including
extension of “Krylov methods, highly parallel multigrid methods”

These two areas are intimately related, at both theoretical and practical
levels, and require a holistic approach.

1J. Slotnick, A. Khodadoust et al., CFD Vision 2030 Study: A Path to Revolutionary
Computational Aerosciences, NASA/CR–2014-218178.
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Survey Results on Simulation Chain from IMR 2015
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Overview of Our Approach

1 Achieve element-quality independence by weighted least squares
2 Improve efficiency of linear solvers using hierarchical meshes
3 Accurate geometric algorithms

Representative Publications

R. Conley, T.J. Delaney, and X. Jiao, Overcoming Element Quality Dependence of
Finite Elements with AES-FEM, Int. J. Num. Meth. in Engrg., in press, 2016.

N. Ray, I. Grindeanu, X. Zhao, V. Mahadevan, and X. Jiao, Array-Based
Hierarchical Mesh Generation in Parallel, Proceedings of 24th International
Meshing Roundtable, 2015.
X. Jiao and D. Wang, Reconstructing High-Order Surfaces for Meshing,
Engineering with Computers, 2012.
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Unified Weighted-Residual Formulation for PDEs

Consider abstract but general form of linear, time-independent PDE

P u(x) = f (x),

with boundary conditions, where P is linear differential operator
In a weighted residual method, given a set of test functions
Ψ(x) = {ψj(x)}, we obtain one equation for each ψj as

ˆ
Ω
P u(x)ψjdx =

ˆ
Ω
f (x)ψjdx .

Boundary conditions are applied by modifying the linear system
In Galerkin finite elements, ψj are finite-element shape functions
In (generalized) finite differences, ψj are Dirac delta functions at nodes
In finite volumes, ψj are step functions over control volume
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Algebraic Equations from Weighted-Residual Methods

Introduce basis functions Φ(x) = {φi (x)} to approximate u and f

Suppose Φ = [φ1, φ2, . . . , φn]T and Ψ = [ψ1, ψ2, . . . , ψn]T

Let u ≈ uTΦ =
∑

i uiφi , and similarly f (x) ≈∑i fiφi

PDE leads to linear system Au = b, where

Aij =

ˆ
Ω
ψi (x)P φj(x)dx and bi =

ˆ
Ω
f (x)ψi (x)dx

In FEM,
´

Ω ψi (x)P φj(x)dx is often transformed to´
Ω L1ψi (x) · (L2 φi (x))T dx via integration by parts

We use WLS-based basis functions, and in turn generalize finite difference,
finite element, and finite volume methods.
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Overcoming Element-Quality Dependency of FEM

FEM is workhorse in engineering, but its accuracy, stability, and
efficiency heavily depends on element shapes, so engineers often spend
> 60% of time on meshing

Examples of poor-shaped elements in 2-D and 3-D.

This dependency is due to interpolation-based basis functions
We propose Adaptive Extended-Stencil FEM to overcome this issue
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Overview of Adaptive Extended-Stencil FEM

Basic Idea of Adaptive Extended-Stencil FEM (AES-FEM)2

I Preserve overall framework, including weak form, test functions,
quadrature rules, ways to enforce boundary conditioners, etc.

I Replace Lagrange basis functions in FEM with generalized Lagrangian
polynomial (GLP) basis functions constructed using WLS over
adaptive, extended neighborhood at each node

Definition
Given a set of degree-d polynomial basis functions {φi}, we say it is a set
of degree-d generalized Lagrange polynomial (GLP) basis functions if:

1
∑

i f (xi )φi approximates a function f to O
(
hd+1

)
in a neighborhood of the

stencil, where h is some characteristic length measure, and

2
∑

i φi = 1.

2R. Conley, T.J. Delaney, and X. Jiao, Overcoming Element Quality Dependence of
Finite Elements with Adaptive Extended Stencil FEM (AES-FEM), Int. J. Num. Meth.
in Engrg., 2016. DOI: 10.1002/nme.5246.
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Examples of Adaptive, Extended Stencils

1.5 ring

2.5 ring

1 ring

2 ring

In 2-D, use 1, 1.5, 2 & 2.5 rings for degree-2, 3, 4 & 5, respectively
In 3-D, define rings at 1/3 increments for better granularity
Adaptively enlarge stencils if WLS is ill-conditioned
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Properties of AES-FEM

Theorem
Suppose u is smooth and thus ‖∇u‖ is bounded. Then, when solving the
Poisson equation using AES-FEM with degree-d GLP basis functions, for
each ψi the weak form is approximated to O(hd), where h is some
characteristic length measure of the mesh.

With similar sparsity pattern, AES-FEM allows higher-order basis
functions than those of FEM, and hence enables better accuracy
For its extended stencil, AES-FEM is insensitive to element shapes.
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Comparison of Accuracy of AES-FEM vs. FEM

Poisson equation

−∇2u = f in Ω

u = g on ∂Ω
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Convection-diffusion equation

−∇2u + c · ∇u = f in Ω

u = g on ∂Ω
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AES-FEM is about 10 times more accurate than classical FEM

Xiangmin (Jim) Jiao Stony Brook University July 4th, 2016 12 / 30



Comparison of Stability of AES-FEM vs. FEM
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Stability (and accuracy) of AES-FEM is independent of element quality
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Comparison of Efficiency of AES-FEM vs. FEM
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AES-FEM is about 2–10 times faster than classical FEM.
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High-Order AES-FEM with Linear Elements
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AES-FEM delivers high-order accuracy (up to sixth order in this
example) with only linear elements, even poorly shaped elements3

3Submitted to SIAM J. Sci. Comput. (SISC).
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Robust AES-FEM Over Tangled Meshes

Example mesh with inverted elements
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AES-FEM is accurate and stable even over tangled meshes
This requires adapting stencil and test functions near tangled regions
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Are Geometry and Mesh Generation Important?

AES-FEM change how we look at meshing
I Element shapes should not be as important for stability
I Isoparametric elements are not necessary for high-order accuracy
I Mesh generation for FEM should not be as hard as it has been

Geometry and mesh generation remain for efficiency and accuracy!
I Hierarchical meshes can lead to nearly optimal linear solvers
I Geometric accuracy is critical for overall accuracy of PDE solutions
I Other issues that remain important include adaptive mesh refinement

and semi-structured meshes
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Motivation of Hierarchical Meshes

Simple approach for
generating large-scale
meshes is to refine an
intermediate scale mesh

Geometric multigrid, which is
optimal solver for large-scale linear
systems from PDEs, requires
hierarchical meshes

Motivation(cont.)

Geometric multigrid (GMG) is desirable as the linear solver of
numerical PDE for its efficiency and it requires a hierarchical mesh.

Refinemet

Refinemet

V-cycle for GMG

Restriction

Prolongation

Goal: generate large-scale hierarchical mesh accurately and efficiently
through uniform refinement and support linear solvers with GMG

Cao Lua , Xinglin Zhaoa , Navamita Rayb , Xiangmin Jiaoa Hierarchical Mesh through Uniform Refinement 4 / 20
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Multi-Degree Refinement of Tetrahedral Meshes

Partition each tetrahedron into congruent sub-tetrahedra and
octahedra
Each octahedron is divided into 4 sub-tetrahedra with shortest
diagonal strategy, resulting k3 sub-tetrahedra for degree-k refinement

Multi-Degree Refinement in 3-D

Partition tetrahedron into congruent sub-tetrahedra and octahedra
Each octahedron will be divided into 4 sub-tetrahedra with the
shortest diagonal strategy, resulting k3 sub-tetrahedra.

degree 2, 3 refinement of a tetrahedron

To refine from h to h̃ ⇡ h/n, degree n could be applied rather than
k = log n levels of degree 2 refinement

Cao Lua , Xinglin Zhaoa , Navamita Rayb , Xiangmin Jiaoa Hierarchical Mesh through Uniform Refinement 9 / 20
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Basic Hierarchical Data Structure

Level 

0/Initial Mesh

1

2

Degree

N/A

2

3

L p

Mesh Storage
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Generalized Hierarchical Data StructureGeneralized Data Structure: Array Based

vertices on L1

Coordinates for all vertices

Hierarchical Mesh

sibhfs

e2pe

e2ce

conn

sibhfs

v2pe:

e2pe

e2ce

L1

L2

conn connectivity of original mesh

Data in AHF for adjacency queries

new vertex to one of its parents

NULL

element to its first child element

connectivity of new elements in L2

update AHF data for refined elements, optional

new element to its parent elements, optional

element to its first child element

v2pe

e2ce
e2pe

new vertices by refinement

v2hf: vertex to half facets, anchor used to locate vertex, optional

Cao Lua , Xinglin Zhaoa , Navamita Rayb , Xiangmin Jiaoa Hierarchical Mesh through Uniform Refinement 13 / 20

Support conformal and non-conformal adaptive mesh refinement
In parallel, we resolve shared vertex and ghost layers
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Hybrid Geometric+Algebraic Multigrid Method
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Multigrid Method with Hierarchical Meshes

Multigrid Method under UMR

1 Solve Poisson equation using FEM on a mesh with 5k vertices and
2.5k tetrahedra, with further 2 levels refinement for GMG

2 HyGA converges twice as fast as AMG for degree-2 refinements, and
about three times as fast in the presence of a degree-3 refinement.

0 5 10 15 20 25
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of iterations

r
e
s
id

u
a
l

 

 

AMG
HyGA(3)

(a) degrees-2+2 refinement.
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(b) degrees-2+3 refinement.

Cao Lua , Xinglin Zhaoa , Navamita Rayb , Xiangmin Jiaoa Hierarchical Mesh through Uniform Refinement 19 / 20
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Effectiveness of Hierarchical Meshes for Multigrid Solvers

Timing results (in seconds) for FEM, with PCG as reference.
test case AMG(L + 1) GMG HyGA: Hybrid Multigrid PCG
verts L setup solve solve (2,L-2) (3,L-3) (3,L-2) (ichol)
36K 5 0.15 0.74 0.16 0.36 0.20 0.14 1.27

147K 6 0.63 3.68 0.65 1.52 0.90 0.58 11.1
32K 3 0.37 1.79 0.38 0.42 0.38 0.39 0.44
292K 4 3.98 24.5 5.66 7.32 5.71 5.77 9.32
2.5M 5 28.5 509 58.3 89.5 59.2 59.8 186

We use hybrid geometric+algebraic multigrid solvers
With 2–3 levels of mesh hierarchy, multigrid solver can be sped up
more than 10 times
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Treatment of Curved Boundaries and Sharp Features

An important issue in hierarchical meshing is treatment of curved
boundaries and sharp featurs

Sharp Features

High order reconstruction algorithm could be applied to geometry with
sharp features

Surface reconstruction can preserve the convergence rate of FEM during
convergence study on uniformly refined meshes

Cao Lua , Xinglin Zhaoa , Navamita Rayb , Xiangmin Jiaoa Hierarchical Mesh through Uniform Refinement 15 / 20
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Importance of Geometric Accuracy
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Overall solution error may be dominated by geometric error,
independently of order of PDE solvers
We use WLS-based high-order reconstruction of surfaces to ensure
geometry has sufficient accuracy relative to PDE discretization
X. Jiao and D. Wang, Reconstructing High-Order Surfaces for
Meshing, Engineering with Computers, 2012.
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Concluding Remarks

Meshing should not be responsible for stability of PDE discretizations
Meshing will still have significant impact of accuracy (point density)
and efficiency (point distribution and mesh hierarchy)
Weighted-least square offers a unified mathematical framework

I Numerical discretizations of PDEs without mesh-quality dependency
I High-order geometry for meshing

Hybrid geometric+algebraic multigrid with small number of levels of
mesh hierarchy can enable near optimal and scalable linear solvers
Tighter integration of geometry, meshing, discretization methods and
linear/nonlinear solvers may be fruitful
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