Incremental progress towards hexahedral mesh generation

Cecil G Armstrong
c.armstrong@qub.ac.uk
2D mesh singularity points

- **Structured quad mesh**
 - Four elements meeting at a internal node
 - Grid topology + boundary alignment → too restrictive

- **Block-structured quad mesh**
 - Simple blocks meeting at nodes of irregular connectivity, i.e. mesh singularities
 - Positive singularity: > 4 elements, negative singularity: <4 elements

Positive singularity

Negative singularity
3D line singularities

- Singularities travels from one face to another
 - Sweeps, multi-sweeps, thin sheets, long slender regions
- Singularities forms loops
 - Revolves
- Singularities meet
 - Limited number of patterns

Volume decomposition

• Strategy
 – Thin sheet, long slender and residual regions
 • Reduce the decomposition effort
 • Reduce the DOF of the analysis model

Residual complex regions - mesh patterns at vertices

- Optimum element number n_i at corner angle θ_i

$$n_i = \text{round} \left(\frac{\theta_i}{\pi/2} \right)$$

n_c:

<table>
<thead>
<tr>
<th>n_c</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum θ_i range:</td>
<td>$[0, \frac{\pi}{4})$</td>
<td>$[\frac{\pi}{4}, \frac{3\pi}{4})$</td>
<td>$[\frac{3\pi}{4}, \frac{5\pi}{4})$</td>
<td>$[\frac{5\pi}{4}, \frac{7\pi}{4})$</td>
<td>$[\frac{7\pi}{4}, 2\pi]$</td>
</tr>
</tbody>
</table>
Identifying surface singularities

$$\sum_{\text{vertices}} \left(\frac{\pi}{2} (n_i - 2) + \alpha_i \right) + \sum_{\text{edges}} \int k_g \, ds + \iint_{\text{face}} K \, dS + (n_+ - n_-) \frac{\pi}{2} = 0$$

A continuum theory for unstructured mesh generation in two dimensions, G Bunin, CAGD, vol. 25, 14–40, 2008

Euler Characteristic

$$\chi = V - E + F$$

where V, E, F are the number of vertices, edges and faces of any subdivision of the surface

Gauss-Bonnet theorem

$$\oint_{\partial R} k_g \, ds + \iint_R K \, dS + \sum_{i=1}^{N} \alpha_i = 2\pi \chi$$

N: the number of corners

n_i: no of elements at each corner
Singularities on simple surfaces

\[n_+ - n_- = -4\chi + \sum_{i=1}^{N} (2 - n_i) \]
Controlling Mesh Density

- Extra singularity pair (a dislocation)
Finding required number of surface singularities

\[n_+ - n_- = -4\chi + \sum_{i=1}^{N} (2 - n_i) \]

\(\chi = 2, N = 0, n_+ - n_- = -8 \)

\(\chi = 0, N = 0, n_+ - n_- = 0 \)
Applications

• Identify sweep-able volumes \[1\]
 – No mesh singularities on wall faces

• Revolves

Surface singularities in the 3D residual regions

\[n_+ - n_- = -1 \]
\[n_+ - n_- = 0 \]
\[n_+ - n_- = +1 \]
\[n_+ - n_- > 1 \text{ or } n_+ - n_- < -1 \]
Singularity placement: using offsets

- Locate the position of the singularities
 - When the number of singularities changes after offset, a singularity should be placed
Singularity placement: offsets vs medial axis$^{[1]}$

- Locate the position of the singularities
 - When the included angle between medial radii changes

Singularity placement: medial axis vs offset

Singularities calculated by making offset of the boundary

Singularities calculated from medial axis
Singularity placement: medial axis vs cross field

- Advancing front of crosses
- Singularities occur where MAT changes from aligned with mesh to diagonal
- Can handle
 - Variations in target element size, shape and orientation
 - Large differences in feature size
- Doesn’t need precise MAT, but singularities end up in very similar places for isotropic elements

Conclusions

• Placement of mesh singularities is key to structured multi-block hex meshing
• Thin sheets: singularities start on one surface and exit on the opposite one
• Long slender regions: singularities run from source to target faces
• Multi-sweep regions: similar
• Revolves: singularities form a loop
• Residual complex regions
 – Simple analysis using Euler characteristic and number of elements at each corner provides minimum necessary number of singularities emerging on each face
 – Can add addition positive/negative singularity pairs to provide target mesh size distribution
• An incremental approach helps identify strategies for different singularity patterns
Acknowledgements

• Current and recent researchers at QUB: Trevor T Robinson, Christopher Tierney, Liang Sun, Harry Fogg, Jonathan Makem

• Rolls-Royce, ARA, Innovate UK: funding, challenging problems and intellectual input